Generalized uncertainty principle: from the harmonic oscillator to a QFT toy model

Abstract Several models of quantum gravity predict the emergence of a minimal length at Planck scale. This is commonly taken into consideration by modifying the Heisenberg uncertainty principle into the generalized uncertainty principle. In this work, we study the implications of a polynomial genera...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pasquale Bosso, Giuseppe Gaetano Luciano
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/45aa0d41190846e2ab62d0a621154a72
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Several models of quantum gravity predict the emergence of a minimal length at Planck scale. This is commonly taken into consideration by modifying the Heisenberg uncertainty principle into the generalized uncertainty principle. In this work, we study the implications of a polynomial generalized uncertainty principle on the harmonic oscillator. We revisit both the analytic and algebraic methods, deriving the exact form of the generalized Heisenberg algebra in terms of the new position and momentum operators. We show that the energy spectrum and eigenfunctions are affected in a non-trivial way. Furthermore, a new set of ladder operators is derived which factorize the Hamiltonian exactly. The above formalism is finally exploited to construct a quantum field theoretic toy model based on the generalized uncertainty principle.