Generalized uncertainty principle: from the harmonic oscillator to a QFT toy model

Abstract Several models of quantum gravity predict the emergence of a minimal length at Planck scale. This is commonly taken into consideration by modifying the Heisenberg uncertainty principle into the generalized uncertainty principle. In this work, we study the implications of a polynomial genera...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Pasquale Bosso, Giuseppe Gaetano Luciano
Format: article
Langue:EN
Publié: SpringerOpen 2021
Sujets:
Accès en ligne:https://doaj.org/article/45aa0d41190846e2ab62d0a621154a72
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Abstract Several models of quantum gravity predict the emergence of a minimal length at Planck scale. This is commonly taken into consideration by modifying the Heisenberg uncertainty principle into the generalized uncertainty principle. In this work, we study the implications of a polynomial generalized uncertainty principle on the harmonic oscillator. We revisit both the analytic and algebraic methods, deriving the exact form of the generalized Heisenberg algebra in terms of the new position and momentum operators. We show that the energy spectrum and eigenfunctions are affected in a non-trivial way. Furthermore, a new set of ladder operators is derived which factorize the Hamiltonian exactly. The above formalism is finally exploited to construct a quantum field theoretic toy model based on the generalized uncertainty principle.