Data analytics using canonical correlation analysis and Monte Carlo simulation
Data analytics: Non-linear model for establishing correlations A method for quantifying non-linear relationships provides insight into the connections between microstructure and properties of materials. Canonical correlation analysis is a common technique used to quantify the relationship between tw...
Enregistré dans:
Auteurs principaux: | Jeffrey M. Rickman, Yan Wang, Anthony D. Rollett, Martin P. Harmer, Charles Compson |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/45b4ebf2f20e439c90859e0508a28eb2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The complementary graphene growth and etching revealed by large-scale kinetic Monte Carlo simulation
par: Xiao Kong, et autres
Publié: (2021) -
Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling
par: Pedram Tavadze, et autres
Publié: (2021) -
Monte Carlo Algorithm-Based Multimodal Magnetic Resonance Imaging Prognosis Prediction in Analysis of Rehabilitation Effect of Exercise Learning on Stroke Patients and Influencing Factors of Memory Function
par: Luyi Wang, et autres
Publié: (2021) -
Code interoperability extends the scope of quantum simulations
par: Marco Govoni, et autres
Publié: (2021) -
Exploiting the quantum mechanically derived force field for functional materials simulations
par: Alexey Odinokov, et autres
Publié: (2021)