Data analytics using canonical correlation analysis and Monte Carlo simulation
Data analytics: Non-linear model for establishing correlations A method for quantifying non-linear relationships provides insight into the connections between microstructure and properties of materials. Canonical correlation analysis is a common technique used to quantify the relationship between tw...
Guardado en:
Autores principales: | Jeffrey M. Rickman, Yan Wang, Anthony D. Rollett, Martin P. Harmer, Charles Compson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/45b4ebf2f20e439c90859e0508a28eb2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The complementary graphene growth and etching revealed by large-scale kinetic Monte Carlo simulation
por: Xiao Kong, et al.
Publicado: (2021) -
Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling
por: Pedram Tavadze, et al.
Publicado: (2021) -
Monte Carlo Algorithm-Based Multimodal Magnetic Resonance Imaging Prognosis Prediction in Analysis of Rehabilitation Effect of Exercise Learning on Stroke Patients and Influencing Factors of Memory Function
por: Luyi Wang, et al.
Publicado: (2021) -
Code interoperability extends the scope of quantum simulations
por: Marco Govoni, et al.
Publicado: (2021) -
Exploiting the quantum mechanically derived force field for functional materials simulations
por: Alexey Odinokov, et al.
Publicado: (2021)