NeuRank: learning to rank with neural networks for drug–target interaction prediction
Abstract Background Experimental verification of a drug discovery process is expensive and time-consuming. Therefore, recently, the demand to more efficiently and effectively identify drug–target interactions (DTIs) has intensified. Results We treat the prediction of DTIs as a ranking problem and pr...
Guardado en:
Autores principales: | Xiujin Wu, Wenhua Zeng, Fan Lin, Xiuze Zhou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/45ca5360d403433b8f68378e784b6a64 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Drug–target interaction prediction using unifying of graph regularized nuclear norm with bilinear factorization
por: Ali Ghanbari Sorkhi, et al.
Publicado: (2021) -
Learning from low-rank multimodal representations for predicting disease-drug associations
por: Pengwei Hu, et al.
Publicado: (2021) -
Analysis on Characteristics of Magnetic Resonance Imaging Image under Low-Rank Matrix Denoising Algorithm in the Diagnosis of Cerebral Aneurysm
por: Jun Li, et al.
Publicado: (2021) -
Magnetic drug delivery effects on tumor growth
por: Soroosh Arshadi, et al.
Publicado: (2021) -
An Approach for Thoracic Syndrome Classification with Convolutional Neural Networks
por: Sapna Juneja, et al.
Publicado: (2021)