Context-dependent extinction learning emerging from raw sensory inputs: a reinforcement learning approach
Abstract The context-dependence of extinction learning has been well studied and requires the hippocampus. However, the underlying neural mechanisms are still poorly understood. Using memory-driven reinforcement learning and deep neural networks, we developed a model that learns to navigate autonomo...
Guardado en:
Autores principales: | Thomas Walther, Nicolas Diekmann, Sandhiya Vijayabaskaran, José R. Donoso, Denise Manahan-Vaughan, Laurenz Wiskott, Sen Cheng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/45e2a707d2c04f75a6f4100661e4bbbe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reinforcement learning on slow features of high-dimensional input streams.
por: Robert Legenstein, et al.
Publicado: (2010) -
Associative learning and extinction of conditioned threat predictors across sensory modalities
por: Laura. R. Koenen, et al.
Publicado: (2021) -
The role of additive neurogenesis and synaptic plasticity in a hippocampal memory model with grid-cell like input.
por: Peter A Appleby, et al.
Publicado: (2011) -
Author Correction: Associative learning and extinction of conditioned threat predictors across sensory modalities
por: Laura. R. Koenen, et al.
Publicado: (2021) -
Contrasting Patterns of Sensory Adaptation in Living and Extinct Flightless Birds
por: Peter Johnston, et al.
Publicado: (2021)