Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach
Abstract Predicting amyloid positivity in patients with mild cognitive impairment (MCI) is crucial. In the present study, we predicted amyloid positivity with structural MRI using a radiomics approach. From MR images (including T1, T2 FLAIR, and DTI sequences) of 440 MCI patients, we extracted radio...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/45ead5f208004eb3876f15c595d9da52 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:45ead5f208004eb3876f15c595d9da52 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:45ead5f208004eb3876f15c595d9da522021-12-02T11:45:02ZPredicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach10.1038/s41598-021-86114-42045-2322https://doaj.org/article/45ead5f208004eb3876f15c595d9da522021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-86114-4https://doaj.org/toc/2045-2322Abstract Predicting amyloid positivity in patients with mild cognitive impairment (MCI) is crucial. In the present study, we predicted amyloid positivity with structural MRI using a radiomics approach. From MR images (including T1, T2 FLAIR, and DTI sequences) of 440 MCI patients, we extracted radiomics features composed of histogram and texture features. These features were used alone or in combination with baseline non-imaging predictors such as age, sex, and ApoE genotype to predict amyloid positivity. We used a regularized regression method for feature selection and prediction. The performance of the baseline non-imaging model was at a fair level (AUC = 0.71). Among single MR-sequence models, T1 and T2 FLAIR radiomics models also showed fair performances (AUC for test = 0.71–0.74, AUC for validation = 0.68–0.70) in predicting amyloid positivity. When T1 and T2 FLAIR radiomics features were combined, the AUC for test was 0.75 and AUC for validation was 0.72 (p vs. baseline model < 0.001). The model performed best when baseline features were combined with a T1 and T2 FLAIR radiomics model (AUC for test = 0.79, AUC for validation = 0.76), which was significantly better than those of the baseline model (p < 0.001) and the T1 + T2 FLAIR radiomics model (p < 0.001). In conclusion, radiomics features showed predictive value for amyloid positivity. It can be used in combination with other predictive features and possibly improve the prediction performance.Jun Pyo KimJonghoon KimHyemin JangJaeho KimSung Hoon KangJi Sun KimJongmin LeeDuk L. NaHee Jin KimSang Won SeoHyunjin ParkNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jun Pyo Kim Jonghoon Kim Hyemin Jang Jaeho Kim Sung Hoon Kang Ji Sun Kim Jongmin Lee Duk L. Na Hee Jin Kim Sang Won Seo Hyunjin Park Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach |
description |
Abstract Predicting amyloid positivity in patients with mild cognitive impairment (MCI) is crucial. In the present study, we predicted amyloid positivity with structural MRI using a radiomics approach. From MR images (including T1, T2 FLAIR, and DTI sequences) of 440 MCI patients, we extracted radiomics features composed of histogram and texture features. These features were used alone or in combination with baseline non-imaging predictors such as age, sex, and ApoE genotype to predict amyloid positivity. We used a regularized regression method for feature selection and prediction. The performance of the baseline non-imaging model was at a fair level (AUC = 0.71). Among single MR-sequence models, T1 and T2 FLAIR radiomics models also showed fair performances (AUC for test = 0.71–0.74, AUC for validation = 0.68–0.70) in predicting amyloid positivity. When T1 and T2 FLAIR radiomics features were combined, the AUC for test was 0.75 and AUC for validation was 0.72 (p vs. baseline model < 0.001). The model performed best when baseline features were combined with a T1 and T2 FLAIR radiomics model (AUC for test = 0.79, AUC for validation = 0.76), which was significantly better than those of the baseline model (p < 0.001) and the T1 + T2 FLAIR radiomics model (p < 0.001). In conclusion, radiomics features showed predictive value for amyloid positivity. It can be used in combination with other predictive features and possibly improve the prediction performance. |
format |
article |
author |
Jun Pyo Kim Jonghoon Kim Hyemin Jang Jaeho Kim Sung Hoon Kang Ji Sun Kim Jongmin Lee Duk L. Na Hee Jin Kim Sang Won Seo Hyunjin Park |
author_facet |
Jun Pyo Kim Jonghoon Kim Hyemin Jang Jaeho Kim Sung Hoon Kang Ji Sun Kim Jongmin Lee Duk L. Na Hee Jin Kim Sang Won Seo Hyunjin Park |
author_sort |
Jun Pyo Kim |
title |
Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach |
title_short |
Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach |
title_full |
Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach |
title_fullStr |
Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach |
title_full_unstemmed |
Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach |
title_sort |
predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/45ead5f208004eb3876f15c595d9da52 |
work_keys_str_mv |
AT junpyokim predictingamyloidpositivityinpatientswithmildcognitiveimpairmentusingaradiomicsapproach AT jonghoonkim predictingamyloidpositivityinpatientswithmildcognitiveimpairmentusingaradiomicsapproach AT hyeminjang predictingamyloidpositivityinpatientswithmildcognitiveimpairmentusingaradiomicsapproach AT jaehokim predictingamyloidpositivityinpatientswithmildcognitiveimpairmentusingaradiomicsapproach AT sunghoonkang predictingamyloidpositivityinpatientswithmildcognitiveimpairmentusingaradiomicsapproach AT jisunkim predictingamyloidpositivityinpatientswithmildcognitiveimpairmentusingaradiomicsapproach AT jongminlee predictingamyloidpositivityinpatientswithmildcognitiveimpairmentusingaradiomicsapproach AT duklna predictingamyloidpositivityinpatientswithmildcognitiveimpairmentusingaradiomicsapproach AT heejinkim predictingamyloidpositivityinpatientswithmildcognitiveimpairmentusingaradiomicsapproach AT sangwonseo predictingamyloidpositivityinpatientswithmildcognitiveimpairmentusingaradiomicsapproach AT hyunjinpark predictingamyloidpositivityinpatientswithmildcognitiveimpairmentusingaradiomicsapproach |
_version_ |
1718395277188005888 |