Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach
Abstract Predicting amyloid positivity in patients with mild cognitive impairment (MCI) is crucial. In the present study, we predicted amyloid positivity with structural MRI using a radiomics approach. From MR images (including T1, T2 FLAIR, and DTI sequences) of 440 MCI patients, we extracted radio...
Guardado en:
Autores principales: | Jun Pyo Kim, Jonghoon Kim, Hyemin Jang, Jaeho Kim, Sung Hoon Kang, Ji Sun Kim, Jongmin Lee, Duk L. Na, Hee Jin Kim, Sang Won Seo, Hyunjin Park |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/45ead5f208004eb3876f15c595d9da52 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Concordance in detecting amyloid positivity between 18F-florbetaben and 18F-flutemetamol amyloid PET using quantitative and qualitative assessments
por: Soo Hyun Cho, et al.
Publicado: (2021) -
Prediction of tau accumulation in prodromal Alzheimer’s disease using an ensemble machine learning approach
por: Jaeho Kim, et al.
Publicado: (2021) -
Protective effects of APOE e2 against disease progression in subcortical vascular mild cognitive impairment patients: A three-year longitudinal study
por: Yeo Jin Kim, et al.
Publicado: (2017) -
Prediction of Amyloid Positivity in Mild Cognitive Impairment Using Fully Automated Brain Segmentation Software
por: Kang KM, et al.
Publicado: (2020) -
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
por: Hwan-ho Cho, et al.
Publicado: (2021)