Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge
Abstract Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/45ee48713e9b4dd591d3f8cc81d31894 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:45ee48713e9b4dd591d3f8cc81d31894 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:45ee48713e9b4dd591d3f8cc81d318942021-12-02T16:31:03ZCrowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge10.1038/s41746-021-00414-72398-6352https://doaj.org/article/45ee48713e9b4dd591d3f8cc81d318942021-03-01T00:00:00Zhttps://doi.org/10.1038/s41746-021-00414-7https://doaj.org/toc/2398-6352Abstract Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95).Solveig K. SiebertsJennifer SchaffMarlena DudaBálint Ármin PatakiMing SunPhil SnyderJean-Francois DaneaultFederico ParisiGianluca CostanteUdi RubinPeter BandaYooree ChaeElias Chaibub NetoE. Ray DorseyZafer AydınAipeng ChenLaura L. EloCarlos EspinoEnrico GlaabEthan GoanFatemeh Noushin GolabchiYasin GörmezMaria K. JaakkolaJitendra JonnagaddalaRiku KlénDongmei LiChristian McDanielDimitri PerrinThanneer M. PerumalNastaran Mohammadian RadErin RainaldiStefano SapienzaPatrick SchwabNikolai ShokhirevMikko S. VenäläinenGloria Vergara-DiazYuqian Zhangthe Parkinson’s Disease Digital Biomarker Challenge ConsortiumYuanjia WangYuanfang GuanDaniela BrunnerPaolo BonatoLara M. MangraviteLarsson OmbergNature PortfolioarticleComputer applications to medicine. Medical informaticsR858-859.7ENnpj Digital Medicine, Vol 4, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Computer applications to medicine. Medical informatics R858-859.7 |
spellingShingle |
Computer applications to medicine. Medical informatics R858-859.7 Solveig K. Sieberts Jennifer Schaff Marlena Duda Bálint Ármin Pataki Ming Sun Phil Snyder Jean-Francois Daneault Federico Parisi Gianluca Costante Udi Rubin Peter Banda Yooree Chae Elias Chaibub Neto E. Ray Dorsey Zafer Aydın Aipeng Chen Laura L. Elo Carlos Espino Enrico Glaab Ethan Goan Fatemeh Noushin Golabchi Yasin Görmez Maria K. Jaakkola Jitendra Jonnagaddala Riku Klén Dongmei Li Christian McDaniel Dimitri Perrin Thanneer M. Perumal Nastaran Mohammadian Rad Erin Rainaldi Stefano Sapienza Patrick Schwab Nikolai Shokhirev Mikko S. Venäläinen Gloria Vergara-Diaz Yuqian Zhang the Parkinson’s Disease Digital Biomarker Challenge Consortium Yuanjia Wang Yuanfang Guan Daniela Brunner Paolo Bonato Lara M. Mangravite Larsson Omberg Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge |
description |
Abstract Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95). |
format |
article |
author |
Solveig K. Sieberts Jennifer Schaff Marlena Duda Bálint Ármin Pataki Ming Sun Phil Snyder Jean-Francois Daneault Federico Parisi Gianluca Costante Udi Rubin Peter Banda Yooree Chae Elias Chaibub Neto E. Ray Dorsey Zafer Aydın Aipeng Chen Laura L. Elo Carlos Espino Enrico Glaab Ethan Goan Fatemeh Noushin Golabchi Yasin Görmez Maria K. Jaakkola Jitendra Jonnagaddala Riku Klén Dongmei Li Christian McDaniel Dimitri Perrin Thanneer M. Perumal Nastaran Mohammadian Rad Erin Rainaldi Stefano Sapienza Patrick Schwab Nikolai Shokhirev Mikko S. Venäläinen Gloria Vergara-Diaz Yuqian Zhang the Parkinson’s Disease Digital Biomarker Challenge Consortium Yuanjia Wang Yuanfang Guan Daniela Brunner Paolo Bonato Lara M. Mangravite Larsson Omberg |
author_facet |
Solveig K. Sieberts Jennifer Schaff Marlena Duda Bálint Ármin Pataki Ming Sun Phil Snyder Jean-Francois Daneault Federico Parisi Gianluca Costante Udi Rubin Peter Banda Yooree Chae Elias Chaibub Neto E. Ray Dorsey Zafer Aydın Aipeng Chen Laura L. Elo Carlos Espino Enrico Glaab Ethan Goan Fatemeh Noushin Golabchi Yasin Görmez Maria K. Jaakkola Jitendra Jonnagaddala Riku Klén Dongmei Li Christian McDaniel Dimitri Perrin Thanneer M. Perumal Nastaran Mohammadian Rad Erin Rainaldi Stefano Sapienza Patrick Schwab Nikolai Shokhirev Mikko S. Venäläinen Gloria Vergara-Diaz Yuqian Zhang the Parkinson’s Disease Digital Biomarker Challenge Consortium Yuanjia Wang Yuanfang Guan Daniela Brunner Paolo Bonato Lara M. Mangravite Larsson Omberg |
author_sort |
Solveig K. Sieberts |
title |
Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge |
title_short |
Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge |
title_full |
Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge |
title_fullStr |
Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge |
title_full_unstemmed |
Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge |
title_sort |
crowdsourcing digital health measures to predict parkinson’s disease severity: the parkinson’s disease digital biomarker dream challenge |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/45ee48713e9b4dd591d3f8cc81d31894 |
work_keys_str_mv |
AT solveigksieberts crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT jenniferschaff crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT marlenaduda crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT balintarminpataki crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT mingsun crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT philsnyder crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT jeanfrancoisdaneault crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT federicoparisi crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT gianlucacostante crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT udirubin crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT peterbanda crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT yooreechae crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT eliaschaibubneto crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT eraydorsey crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT zaferaydın crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT aipengchen crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT lauralelo crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT carlosespino crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT enricoglaab crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT ethangoan crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT fatemehnoushingolabchi crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT yasingormez crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT mariakjaakkola crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT jitendrajonnagaddala crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT rikuklen crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT dongmeili crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT christianmcdaniel crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT dimitriperrin crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT thanneermperumal crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT nastaranmohammadianrad crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT erinrainaldi crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT stefanosapienza crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT patrickschwab crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT nikolaishokhirev crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT mikkosvenalainen crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT gloriavergaradiaz crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT yuqianzhang crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT theparkinsonsdiseasedigitalbiomarkerchallengeconsortium crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT yuanjiawang crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT yuanfangguan crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT danielabrunner crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT paolobonato crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT larammangravite crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT larssonomberg crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge |
_version_ |
1718383868032057344 |