Intelligent image-based in situ single-cell isolation

The isolation of single cells while retaining context is important for quantifying cellular heterogeneity but technically challenging. Here, the authors develop a high-throughput, scalable workflow for microscopy-based single cell isolation using machine-learning, high-throughput microscopy and lase...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Csilla Brasko, Kevin Smith, Csaba Molnar, Nora Farago, Lili Hegedus, Arpad Balind, Tamas Balassa, Abel Szkalisity, Farkas Sukosd, Katalin Kocsis, Balazs Balint, Lassi Paavolainen, Marton Z. Enyedi, Istvan Nagy, Laszlo G. Puskas, Lajos Haracska, Gabor Tamas, Peter Horvath
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/45fa759495a24fc3831e7ab0ebc0ea21
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The isolation of single cells while retaining context is important for quantifying cellular heterogeneity but technically challenging. Here, the authors develop a high-throughput, scalable workflow for microscopy-based single cell isolation using machine-learning, high-throughput microscopy and laser capture microdissection.