Multilayer Feature Extraction Network for Military Ship Detection From High-Resolution Optical Remote Sensing Images
Rapid and accurate detection of maritime military targets is of great significance for maintaining national defense security. Few studies have used high-resolution optical images for the detailed classification of maritime military targets. This article, inspired by EfficientDet trackers, presents a...
Guardado en:
Autores principales: | Peng Qin, Yulin Cai, Jia Liu, Puran Fan, Menghao Sun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/45faa9b0bbdb4011b8a10db895b96909 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Attention_FPNet: Two-Branch Remote Sensing Image Pansharpening Network Based on Attention Feature Fusion
por: Xiwu Zhong, et al.
Publicado: (2021) -
STransFuse: Fusing Swin Transformer and Convolutional Neural Network for Remote Sensing Image Semantic Segmentation
por: Liang Gao, et al.
Publicado: (2021) -
Scattering-Keypoint-Guided Network for Oriented Ship Detection in High-Resolution and Large-Scale SAR Images
por: Kun Fu, et al.
Publicado: (2021) -
Hyperspectral Image Classification Based on Multilevel Joint Feature Extraction Network
por: Xiaochen Lu, et al.
Publicado: (2021) -
An Optimized Deep Neural Network Detecting Small and Narrow Rectangular Objects in Google Earth Images
por: Shenlu Jiang, et al.
Publicado: (2020)