Multilayer Feature Extraction Network for Military Ship Detection From High-Resolution Optical Remote Sensing Images
Rapid and accurate detection of maritime military targets is of great significance for maintaining national defense security. Few studies have used high-resolution optical images for the detailed classification of maritime military targets. This article, inspired by EfficientDet trackers, presents a...
Enregistré dans:
Auteurs principaux: | Peng Qin, Yulin Cai, Jia Liu, Puran Fan, Menghao Sun |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/45faa9b0bbdb4011b8a10db895b96909 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Attention_FPNet: Two-Branch Remote Sensing Image Pansharpening Network Based on Attention Feature Fusion
par: Xiwu Zhong, et autres
Publié: (2021) -
STransFuse: Fusing Swin Transformer and Convolutional Neural Network for Remote Sensing Image Semantic Segmentation
par: Liang Gao, et autres
Publié: (2021) -
Scattering-Keypoint-Guided Network for Oriented Ship Detection in High-Resolution and Large-Scale SAR Images
par: Kun Fu, et autres
Publié: (2021) -
Hyperspectral Image Classification Based on Multilevel Joint Feature Extraction Network
par: Xiaochen Lu, et autres
Publié: (2021) -
An Optimized Deep Neural Network Detecting Small and Narrow Rectangular Objects in Google Earth Images
par: Shenlu Jiang, et autres
Publié: (2020)