Monitoring and management of lung cancer patients following curative-intent treatment: clinical utility of 2-deoxy-2-[fluorine-18]fluoro-d-glucose positron emission tomography/computed tomography

Shigeki Sawada, Hiroshi Suehisa, Tsuyoshi Ueno, Ryujiro Sugimoto, Motohiro Yamashita Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan Abstract: A large number of studies have demonstrated that 2-deoxy-2-[fluorine-18]fluoro-d-glucose positron emi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sawada S, Suehisa H, Ueno T, Sugimoto R, Yamashita M
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2016
Materias:
Acceso en línea:https://doaj.org/article/4600742be59040dbaf2c717762343746
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Shigeki Sawada, Hiroshi Suehisa, Tsuyoshi Ueno, Ryujiro Sugimoto, Motohiro Yamashita Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan Abstract: A large number of studies have demonstrated that 2-deoxy-2-[fluorine-18]fluoro-d-glucose positron emission tomography/computed tomography (FDG-PET/CT) is superior to conventional modalities for the diagnosis of lung cancer and the evaluation of the extent of the disease. However, the efficacy of PET/CT in a follow-up surveillance setting following curative-intent treatments for lung cancer has not yet been established. We reviewed previous papers and evaluated the potential efficacy of PET-CT in the setting of follow-up surveillance. The following are our findings: 1) PET/CT is considered to be superior or equivalent to conventional modalities for the detection of local recurrence. However, inflammatory changes and fibrosis after treatments in local areas often result in false-positive findings; 2) the detection of asymptomatic distant metastasis is considered to be an advantage of PET/CT in a follow-up setting. However, it should be noted that detection of brain metastasis with PET/CT has some limitation, similar to its use in pretreatment staging; 3) additional radiation exposure and higher medical cost arising from the use of PET/CT should be taken into consideration, particularly in patients who might not have cancer after curative-intent treatment and are expected to have a long lifespan. The absence of any data regarding survival benefits and/or improvements in quality of life is another critical issue. In summary, PET/CT is considered to be more accurate and sensitive than conventional modalities for the detection of asymptomatic recurrence after curative-intent treatments. These advantages could modify subsequent management in patients with suspected recurrence and might contribute to the selection of appropriate treatments for recurrence. Therefore, PET/CT may be an alternative to conventional follow-up modalities. However, several important issues remain to be solved. PET/CT in a follow-up surveillance setting is generally not recommended in clinical practice at the moment. Keywords: lung cancer, follow-up surveillance, FDG-PET/CT