Reaction factoring and bipartite update graphs accelerate the Gillespie Algorithm for large-scale biochemical systems.
ODE simulations of chemical systems perform poorly when some of the species have extremely low concentrations. Stochastic simulation methods, which can handle this case, have been impractical for large systems due to computational complexity. We observe, however, that when modeling complex biologica...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4602820133f24bfe84e72c5d172c0e3a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4602820133f24bfe84e72c5d172c0e3a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4602820133f24bfe84e72c5d172c0e3a2021-11-25T06:26:53ZReaction factoring and bipartite update graphs accelerate the Gillespie Algorithm for large-scale biochemical systems.1932-620310.1371/journal.pone.0008125https://doaj.org/article/4602820133f24bfe84e72c5d172c0e3a2010-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/20066048/?tool=EBIhttps://doaj.org/toc/1932-6203ODE simulations of chemical systems perform poorly when some of the species have extremely low concentrations. Stochastic simulation methods, which can handle this case, have been impractical for large systems due to computational complexity. We observe, however, that when modeling complex biological systems: (1) a small number of reactions tend to occur a disproportionately large percentage of the time, and (2) a small number of species tend to participate in a disproportionately large percentage of reactions. We exploit these properties in LOLCAT Method, a new implementation of the Gillespie Algorithm. First, factoring reaction propensities allows many propensities dependent on a single species to be updated in a single operation. Second, representing dependencies between reactions with a bipartite graph of reactions and species requires only storage for reactions, rather than the required for a graph that includes only reactions. Together, these improvements allow our implementation of LOLCAT Method to execute orders of magnitude faster than currently existing Gillespie Algorithm variants when simulating several yeast MAPK cascade models.Sagar IndurkhyaJacob BealPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 5, Iss 1, p e8125 (2010) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Sagar Indurkhya Jacob Beal Reaction factoring and bipartite update graphs accelerate the Gillespie Algorithm for large-scale biochemical systems. |
description |
ODE simulations of chemical systems perform poorly when some of the species have extremely low concentrations. Stochastic simulation methods, which can handle this case, have been impractical for large systems due to computational complexity. We observe, however, that when modeling complex biological systems: (1) a small number of reactions tend to occur a disproportionately large percentage of the time, and (2) a small number of species tend to participate in a disproportionately large percentage of reactions. We exploit these properties in LOLCAT Method, a new implementation of the Gillespie Algorithm. First, factoring reaction propensities allows many propensities dependent on a single species to be updated in a single operation. Second, representing dependencies between reactions with a bipartite graph of reactions and species requires only storage for reactions, rather than the required for a graph that includes only reactions. Together, these improvements allow our implementation of LOLCAT Method to execute orders of magnitude faster than currently existing Gillespie Algorithm variants when simulating several yeast MAPK cascade models. |
format |
article |
author |
Sagar Indurkhya Jacob Beal |
author_facet |
Sagar Indurkhya Jacob Beal |
author_sort |
Sagar Indurkhya |
title |
Reaction factoring and bipartite update graphs accelerate the Gillespie Algorithm for large-scale biochemical systems. |
title_short |
Reaction factoring and bipartite update graphs accelerate the Gillespie Algorithm for large-scale biochemical systems. |
title_full |
Reaction factoring and bipartite update graphs accelerate the Gillespie Algorithm for large-scale biochemical systems. |
title_fullStr |
Reaction factoring and bipartite update graphs accelerate the Gillespie Algorithm for large-scale biochemical systems. |
title_full_unstemmed |
Reaction factoring and bipartite update graphs accelerate the Gillespie Algorithm for large-scale biochemical systems. |
title_sort |
reaction factoring and bipartite update graphs accelerate the gillespie algorithm for large-scale biochemical systems. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2010 |
url |
https://doaj.org/article/4602820133f24bfe84e72c5d172c0e3a |
work_keys_str_mv |
AT sagarindurkhya reactionfactoringandbipartiteupdategraphsacceleratethegillespiealgorithmforlargescalebiochemicalsystems AT jacobbeal reactionfactoringandbipartiteupdategraphsacceleratethegillespiealgorithmforlargescalebiochemicalsystems |
_version_ |
1718413677845020672 |