Geometrical Nonlinearity for a Timoshenko Beam with Flexoelectricity

The Timoshenko beam model is applied to the analysis of the flexoelectric effect for a cantilever beam under large deformations. The geometric nonlinearity with von Kármán strains is considered. The nonlinear system of ordinary differential equations (ODE) for beam deflection and rotation are derive...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Miroslav Repka, Jan Sladek, Vladimir Sladek
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/4604a85724a1449eb41b00d80ff4b570
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4604a85724a1449eb41b00d80ff4b570
record_format dspace
spelling oai:doaj.org-article:4604a85724a1449eb41b00d80ff4b5702021-11-25T18:32:38ZGeometrical Nonlinearity for a Timoshenko Beam with Flexoelectricity10.3390/nano111131232079-4991https://doaj.org/article/4604a85724a1449eb41b00d80ff4b5702021-11-01T00:00:00Zhttps://www.mdpi.com/2079-4991/11/11/3123https://doaj.org/toc/2079-4991The Timoshenko beam model is applied to the analysis of the flexoelectric effect for a cantilever beam under large deformations. The geometric nonlinearity with von Kármán strains is considered. The nonlinear system of ordinary differential equations (ODE) for beam deflection and rotation are derived. Moreover, this nonlinear system is linearized for each load increment, where it is solved iteratively. For the vanishing flexoelectric coefficient, the governing equations lead to the classical Timoshenko beam model. Furthermore, the influence of the flexoelectricity coefficient and the microstructural length-scale parameter on the beam deflection and the induced electric intensity is investigated.Miroslav RepkaJan SladekVladimir SladekMDPI AGarticlevon kármán large deformationsflexoelectricitycantilever beamtimoshenko modelnonlinear systemChemistryQD1-999ENNanomaterials, Vol 11, Iss 3123, p 3123 (2021)
institution DOAJ
collection DOAJ
language EN
topic von kármán large deformations
flexoelectricity
cantilever beam
timoshenko model
nonlinear system
Chemistry
QD1-999
spellingShingle von kármán large deformations
flexoelectricity
cantilever beam
timoshenko model
nonlinear system
Chemistry
QD1-999
Miroslav Repka
Jan Sladek
Vladimir Sladek
Geometrical Nonlinearity for a Timoshenko Beam with Flexoelectricity
description The Timoshenko beam model is applied to the analysis of the flexoelectric effect for a cantilever beam under large deformations. The geometric nonlinearity with von Kármán strains is considered. The nonlinear system of ordinary differential equations (ODE) for beam deflection and rotation are derived. Moreover, this nonlinear system is linearized for each load increment, where it is solved iteratively. For the vanishing flexoelectric coefficient, the governing equations lead to the classical Timoshenko beam model. Furthermore, the influence of the flexoelectricity coefficient and the microstructural length-scale parameter on the beam deflection and the induced electric intensity is investigated.
format article
author Miroslav Repka
Jan Sladek
Vladimir Sladek
author_facet Miroslav Repka
Jan Sladek
Vladimir Sladek
author_sort Miroslav Repka
title Geometrical Nonlinearity for a Timoshenko Beam with Flexoelectricity
title_short Geometrical Nonlinearity for a Timoshenko Beam with Flexoelectricity
title_full Geometrical Nonlinearity for a Timoshenko Beam with Flexoelectricity
title_fullStr Geometrical Nonlinearity for a Timoshenko Beam with Flexoelectricity
title_full_unstemmed Geometrical Nonlinearity for a Timoshenko Beam with Flexoelectricity
title_sort geometrical nonlinearity for a timoshenko beam with flexoelectricity
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/4604a85724a1449eb41b00d80ff4b570
work_keys_str_mv AT miroslavrepka geometricalnonlinearityforatimoshenkobeamwithflexoelectricity
AT jansladek geometricalnonlinearityforatimoshenkobeamwithflexoelectricity
AT vladimirsladek geometricalnonlinearityforatimoshenkobeamwithflexoelectricity
_version_ 1718411011865706496