Robust Computed Torque Control for Uncertain Robotic Manipulatorss

This paper presents a robust control method for the trajectory control of the robotic manipulator. The standard Computed Torque Control (CTC) is an important method in the robotic control systems but its not robust to system uncertainty and external disturbance. The proposed method overcome the sys...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Maryam Sadeq Ahmed, Ali Hussien M Mary, Hisham Hassan Jasim
Formato: article
Lenguaje:EN
Publicado: Al-Khwarizmi College of Engineering – University of Baghdad 2021
Materias:
Acceso en línea:https://doaj.org/article/460a6bc7c9e545cf8776892a473ac654
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This paper presents a robust control method for the trajectory control of the robotic manipulator. The standard Computed Torque Control (CTC) is an important method in the robotic control systems but its not robust to system uncertainty and external disturbance. The proposed method overcome the system uncertainty and external disturbance problems. In this paper, a robustification term has been added to the standard CTC. The stability of the proposed control method is approved by the Lyapunov stability theorem.  The performance of the presented controller is tested by MATLAB-Simulink environment and is compared with different control methods to illustrate its robustness and performance.