Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility

Juan Liao1, Mo Anchun1,2, Zhimin Zhu3, Yuan Quan11State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, PR China; 2Department of Dental Implant, 3Department of Prosthodontics; West China Stomatology Hospital, Sichuan University, Chengdu, PR ChinaAbstract: Microbial colonization and bio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Juan Liao, Mo Anchun, Zhimin Zhu, et al
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2010
Materias:
Acceso en línea:https://doaj.org/article/460afb253cae4ef8adc8bad5d73760dc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Juan Liao1, Mo Anchun1,2, Zhimin Zhu3, Yuan Quan11State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, PR China; 2Department of Dental Implant, 3Department of Prosthodontics; West China Stomatology Hospital, Sichuan University, Chengdu, PR ChinaAbstract: Microbial colonization and biofilm formation on the surface of implant devices may cause peri-implantitis and lead to bone loss. The aim of this study was to develop a novel antibacterial titanium implant surface and to test its biological performance. In a previous study, we demonstrated that titanium plates deposited by nanosilver acquired antibacterial activity to Staphylococcus aureus and Escherichia coli. While antibacterial activity is important, biomaterial surfaces should be modified to achieve excellent cell compatibility as well. In the present study, using the MTT assay, fluorescence microscopy, and scanning electron microscopy, we assessed cell viability, cytoskeletal architecture and cell attachment, respectively, on our silver nanoparticle-modified titanium (Ti-nAg) plate. The results demonstrate that the Ti-nAg do not show any cytotoxicity to the human gingival fibroblasts. Our data indicate that Ti-nAg is a novel material with both good antibacterial properties and uncompromised cytocompatibility, which can be used as an implanted biomaterial.Keywords: nanosilver, titanium, antibacterial activity, cytocompatibility