HiCancer: accurate and complete cancer genome phasing with Hi-C reads
Abstract Due to the high complexity of cancer genome, it is too difficult to generate complete cancer genome map which contains the sequence of every DNA molecule until now. Nevertheless, phasing each chromosome in cancer genome into two haplotypes according to germline mutations provides a suboptim...
Guardado en:
Autores principales: | Weihua Pan, Desheng Gong, Da Sun, Haohui Luo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/460b0ebe7f5446b4a76b9c5335960bcc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Extended haplotype-phasing of long-read de novo genome assemblies using Hi-C
por: Zev N. Kronenberg, et al.
Publicado: (2021) -
HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP
por: Merve Sahin, et al.
Publicado: (2021) -
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
por: Yan Zhang, et al.
Publicado: (2018) -
VEHiCLE: a Variationally Encoded Hi-C Loss Enhancement algorithm for improving and generating Hi-C data
por: Max Highsmith, et al.
Publicado: (2021) -
Capture Hi-C identifies putative target genes at 33 breast cancer risk loci
por: Joseph S. Baxter, et al.
Publicado: (2018)