Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
Animals repeat rewarded behaviors, but the physiological basis of reward-based learning has only been partially elucidated. On one hand, experimental evidence shows that the neuromodulator dopamine carries information about rewards and affects synaptic plasticity. On the other hand, the theory of re...
Guardado en:
Autores principales: | Nicolas Frémaux, Henning Sprekeler, Wulfram Gerstner |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/460ef17dce144fe7852575a719650b18 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Coding and decoding with adapting neurons: a population approach to the peri-stimulus time histogram.
por: Richard Naud, et al.
Publicado: (2012) -
Self-organization of a doubly asynchronous irregular network state for spikes and bursts.
por: Filip Vercruysse, et al.
Publicado: (2021) -
Self-organization of a doubly asynchronous irregular network state for spikes and bursts
por: Filip Vercruysse, et al.
Publicado: (2021) -
Delay selection by spike-timing-dependent plasticity in recurrent networks of spiking neurons receiving oscillatory inputs.
por: Robert R Kerr, et al.
Publicado: (2013) -
Synaptic plasticity in neural networks needs homeostasis with a fast rate detector.
por: Friedemann Zenke, et al.
Publicado: (2013)