Soret–Dufour impact on a three-dimensional Casson nanofluid flow with dust particles and variable characteristics in a permeable media

Abstract In this study, the effects of variable characteristics are analyzed on a three-dimensional (3D) dusty Casson nanofluid flow past a deformable bidirectional surface amalgamated with chemical reaction and Arrhenius activation energy. The surface is deformable in the direction of the x-axis an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Naila Shaheen, Muhammad Ramzan, Ahmed Alshehri, Zahir Shah, Poom Kumam
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/461767f1c0534b7791a66b501d27ec7d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract In this study, the effects of variable characteristics are analyzed on a three-dimensional (3D) dusty Casson nanofluid flow past a deformable bidirectional surface amalgamated with chemical reaction and Arrhenius activation energy. The surface is deformable in the direction of the x-axis and y-axis. The motion of the flow is induced due to the deformation of the surface. The impression of Soret and Dufour's effects boost the transmission of heat and mass. The flow is analyzed numerically with the combined impacts of thermal radiation, momentum slip, and convective heat condition. A numerical solution for the system of the differential equations is attained by employing the bvp4c function in MATLAB. The dimensionless parameters are graphically illustrated and discussed for the involved profiles. It is perceived that on escalating the Casson fluid and porosity parameters, the velocity field declines for fluid-particle suspension. Also, for augmented activation energy and Soret number, the concentration field enhances. An opposite behavior is noticed in the thermal field for fluctuation in fluid-particle interaction parameters for fluid and dust phase. Drag force coefficient increases on escalating porosity parameter and Hartmann number. On amplifying the radiation parameter heat and mass flux augments. A comparative analysis of the present investigation with an already published work is also added to substantiate the envisioned problem.