Quantifying the unknown impact of segmentation uncertainty on image-based simulations
Image-based simulation for obtaining physical quantities is limited by the uncertainty in the underlying image segmentation. Here, the authors introduce a workflow for efficiently quantifying segmentation uncertainty and creating uncertainty distributions of the resulting physics quantities.
Guardado en:
Autores principales: | Michael C. Krygier, Tyler LaBonte, Carianne Martinez, Chance Norris, Krish Sharma, Lincoln N. Collins, Partha P. Mukherjee, Scott A. Roberts |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4620f947e8084fc3b4fac70b7b880286 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Uncertainty quantification of TMS simulation considering MRI segmentation error
por: Hao Zhang, et al.
Publicado: (2021) -
Applied Latin Hypercube stochastic method to quantify the uncertainty in groundwater equation model simulations
por: El Mezouary Lhoussaine, et al.
Publicado: (2021) -
Quantifying the impact of uncertainty on threat management for biodiversity
por: Sam Nicol, et al.
Publicado: (2019) -
A framework for quantifying uncertainty in DFT energy corrections
por: Amanda Wang, et al.
Publicado: (2021) -
Quantifying aggregated uncertainty in Plasmodium falciparum malaria prevalence and populations at risk via efficient space-time geostatistical joint simulation.
por: Peter W Gething, et al.
Publicado: (2010)