A waveguide metasurface based quasi-far-field transverse-electric superlens
The imaging capability of conventional lenses is mainly limited by the diffraction of light, and the so-called superlens has been developed allowing the recovery of evanescent waves in the focal plane. However, the remarkable focusing behavior of the superlens is greatly confined in the near-field r...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Institue of Optics and Electronics, Chinese Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/46532b7693fc48138c5109d09c524893 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:46532b7693fc48138c5109d09c524893 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:46532b7693fc48138c5109d09c5248932021-11-17T07:53:54ZA waveguide metasurface based quasi-far-field transverse-electric superlens2096-457910.29026/oea.2021.210013https://doaj.org/article/46532b7693fc48138c5109d09c5248932021-09-01T00:00:00Zhttp://www.oejournal.org/article/doi/10.29026/oea.2021.210013https://doaj.org/toc/2096-4579The imaging capability of conventional lenses is mainly limited by the diffraction of light, and the so-called superlens has been developed allowing the recovery of evanescent waves in the focal plane. However, the remarkable focusing behavior of the superlens is greatly confined in the near-field regime due to the exponential decay of evanescent waves. To tackle this issue, we design a waveguide metasurface-based superlens with an extraordinary quasi-far-field focusing capability beyond the diffraction limit in the present work. Specifically, we analyze the underlying physical mechanism and provide experimental verification of the proposed superlens. The metasurface superlens is formed by an array of gradient nanoslits perforated in a gold slab, and supports transverse-electric (TE) waveguide modes under linearly polarized illumination along the long axis of the slits. Numerical results illustrate that exciting such TE waveguide modes can modulate not only optical phase but also evanescent waves. Consequently, some high-spatial-frequency waves can contribute to the focusing of the superlens, leading to the quasi-far-field super-resolution focusing of light. Under 405 nm illumination and oil immersion, the fabricated superlens shows a focus spot of 98 nm (i.e. λ/4.13) at a focal distance of 1.49 μm (i.e. 3.68λ) using an oil immersion objective, breaking the diffraction limit of λ/2.38 in the quasi-far field regime. The developed metasurface optical superlens with such extraordinary capabilities promises exciting avenues to nanolithography and ultra-small optoelectronic devices.Yechuan ZhuXiaolin ChenWeizheng YuanZhiqin ChuKwok-yin WongDangyuan LeiYiting YuInstitue of Optics and Electronics, Chinese Academy of Sciencesarticlesuperlensmetasurfacewaveguidequasi-far-field super-resolution focusingbreaking the diffraction limitOptics. LightQC350-467ENOpto-Electronic Advances, Vol 4, Iss 10, Pp 1-6 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
superlens metasurface waveguide quasi-far-field super-resolution focusing breaking the diffraction limit Optics. Light QC350-467 |
spellingShingle |
superlens metasurface waveguide quasi-far-field super-resolution focusing breaking the diffraction limit Optics. Light QC350-467 Yechuan Zhu Xiaolin Chen Weizheng Yuan Zhiqin Chu Kwok-yin Wong Dangyuan Lei Yiting Yu A waveguide metasurface based quasi-far-field transverse-electric superlens |
description |
The imaging capability of conventional lenses is mainly limited by the diffraction of light, and the so-called superlens has been developed allowing the recovery of evanescent waves in the focal plane. However, the remarkable focusing behavior of the superlens is greatly confined in the near-field regime due to the exponential decay of evanescent waves. To tackle this issue, we design a waveguide metasurface-based superlens with an extraordinary quasi-far-field focusing capability beyond the diffraction limit in the present work. Specifically, we analyze the underlying physical mechanism and provide experimental verification of the proposed superlens. The metasurface superlens is formed by an array of gradient nanoslits perforated in a gold slab, and supports transverse-electric (TE) waveguide modes under linearly polarized illumination along the long axis of the slits. Numerical results illustrate that exciting such TE waveguide modes can modulate not only optical phase but also evanescent waves. Consequently, some high-spatial-frequency waves can contribute to the focusing of the superlens, leading to the quasi-far-field super-resolution focusing of light. Under 405 nm illumination and oil immersion, the fabricated superlens shows a focus spot of 98 nm (i.e. λ/4.13) at a focal distance of 1.49 μm (i.e. 3.68λ) using an oil immersion objective, breaking the diffraction limit of λ/2.38 in the quasi-far field regime. The developed metasurface optical superlens with such extraordinary capabilities promises exciting avenues to nanolithography and ultra-small optoelectronic devices. |
format |
article |
author |
Yechuan Zhu Xiaolin Chen Weizheng Yuan Zhiqin Chu Kwok-yin Wong Dangyuan Lei Yiting Yu |
author_facet |
Yechuan Zhu Xiaolin Chen Weizheng Yuan Zhiqin Chu Kwok-yin Wong Dangyuan Lei Yiting Yu |
author_sort |
Yechuan Zhu |
title |
A waveguide metasurface based quasi-far-field transverse-electric superlens |
title_short |
A waveguide metasurface based quasi-far-field transverse-electric superlens |
title_full |
A waveguide metasurface based quasi-far-field transverse-electric superlens |
title_fullStr |
A waveguide metasurface based quasi-far-field transverse-electric superlens |
title_full_unstemmed |
A waveguide metasurface based quasi-far-field transverse-electric superlens |
title_sort |
waveguide metasurface based quasi-far-field transverse-electric superlens |
publisher |
Institue of Optics and Electronics, Chinese Academy of Sciences |
publishDate |
2021 |
url |
https://doaj.org/article/46532b7693fc48138c5109d09c524893 |
work_keys_str_mv |
AT yechuanzhu awaveguidemetasurfacebasedquasifarfieldtransverseelectricsuperlens AT xiaolinchen awaveguidemetasurfacebasedquasifarfieldtransverseelectricsuperlens AT weizhengyuan awaveguidemetasurfacebasedquasifarfieldtransverseelectricsuperlens AT zhiqinchu awaveguidemetasurfacebasedquasifarfieldtransverseelectricsuperlens AT kwokyinwong awaveguidemetasurfacebasedquasifarfieldtransverseelectricsuperlens AT dangyuanlei awaveguidemetasurfacebasedquasifarfieldtransverseelectricsuperlens AT yitingyu awaveguidemetasurfacebasedquasifarfieldtransverseelectricsuperlens AT yechuanzhu waveguidemetasurfacebasedquasifarfieldtransverseelectricsuperlens AT xiaolinchen waveguidemetasurfacebasedquasifarfieldtransverseelectricsuperlens AT weizhengyuan waveguidemetasurfacebasedquasifarfieldtransverseelectricsuperlens AT zhiqinchu waveguidemetasurfacebasedquasifarfieldtransverseelectricsuperlens AT kwokyinwong waveguidemetasurfacebasedquasifarfieldtransverseelectricsuperlens AT dangyuanlei waveguidemetasurfacebasedquasifarfieldtransverseelectricsuperlens AT yitingyu waveguidemetasurfacebasedquasifarfieldtransverseelectricsuperlens |
_version_ |
1718425855715180544 |