Balances: a New Perspective for Microbiome Analysis
ABSTRACT High-throughput sequencing technologies have revolutionized microbiome research by allowing the relative quantification of microbiome composition and function in different environments. In this work we focus on the identification of microbial signatures, groups of microbial taxa that are pr...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/46533789d5c041aaa392ea077f5b55ee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:46533789d5c041aaa392ea077f5b55ee |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:46533789d5c041aaa392ea077f5b55ee2021-12-02T18:39:46ZBalances: a New Perspective for Microbiome Analysis10.1128/mSystems.00053-182379-5077https://doaj.org/article/46533789d5c041aaa392ea077f5b55ee2018-08-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00053-18https://doaj.org/toc/2379-5077ABSTRACT High-throughput sequencing technologies have revolutionized microbiome research by allowing the relative quantification of microbiome composition and function in different environments. In this work we focus on the identification of microbial signatures, groups of microbial taxa that are predictive of a phenotype of interest. We do this by acknowledging the compositional nature of the microbiome and the fact that it carries relative information. Thus, instead of defining a microbial signature as a linear combination in real space corresponding to the abundances of a group of taxa, we consider microbial signatures given by the geometric means of data from two groups of taxa whose relative abundances, or balance, are associated with the response variable of interest. In this work we present selbal, a greedy stepwise algorithm for selection of balances or microbial signatures that preserves the principles of compositional data analysis. We illustrate the algorithm with 16S rRNA abundance data from a Crohn’s microbiome study and an HIV microbiome study. IMPORTANCE We propose a new algorithm for the identification of microbial signatures. These microbial signatures can be used for diagnosis, prognosis, or prediction of therapeutic response based on an individual’s specific microbiota.J. Rivera-PintoJ. J. EgozcueV. Pawlowsky-GlahnR. ParedesM. Noguera-JulianM. L. CalleAmerican Society for Microbiologyarticlebalancescompositional datamicrobiomeMicrobiologyQR1-502ENmSystems, Vol 3, Iss 4 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
balances compositional data microbiome Microbiology QR1-502 |
spellingShingle |
balances compositional data microbiome Microbiology QR1-502 J. Rivera-Pinto J. J. Egozcue V. Pawlowsky-Glahn R. Paredes M. Noguera-Julian M. L. Calle Balances: a New Perspective for Microbiome Analysis |
description |
ABSTRACT High-throughput sequencing technologies have revolutionized microbiome research by allowing the relative quantification of microbiome composition and function in different environments. In this work we focus on the identification of microbial signatures, groups of microbial taxa that are predictive of a phenotype of interest. We do this by acknowledging the compositional nature of the microbiome and the fact that it carries relative information. Thus, instead of defining a microbial signature as a linear combination in real space corresponding to the abundances of a group of taxa, we consider microbial signatures given by the geometric means of data from two groups of taxa whose relative abundances, or balance, are associated with the response variable of interest. In this work we present selbal, a greedy stepwise algorithm for selection of balances or microbial signatures that preserves the principles of compositional data analysis. We illustrate the algorithm with 16S rRNA abundance data from a Crohn’s microbiome study and an HIV microbiome study. IMPORTANCE We propose a new algorithm for the identification of microbial signatures. These microbial signatures can be used for diagnosis, prognosis, or prediction of therapeutic response based on an individual’s specific microbiota. |
format |
article |
author |
J. Rivera-Pinto J. J. Egozcue V. Pawlowsky-Glahn R. Paredes M. Noguera-Julian M. L. Calle |
author_facet |
J. Rivera-Pinto J. J. Egozcue V. Pawlowsky-Glahn R. Paredes M. Noguera-Julian M. L. Calle |
author_sort |
J. Rivera-Pinto |
title |
Balances: a New Perspective for Microbiome Analysis |
title_short |
Balances: a New Perspective for Microbiome Analysis |
title_full |
Balances: a New Perspective for Microbiome Analysis |
title_fullStr |
Balances: a New Perspective for Microbiome Analysis |
title_full_unstemmed |
Balances: a New Perspective for Microbiome Analysis |
title_sort |
balances: a new perspective for microbiome analysis |
publisher |
American Society for Microbiology |
publishDate |
2018 |
url |
https://doaj.org/article/46533789d5c041aaa392ea077f5b55ee |
work_keys_str_mv |
AT jriverapinto balancesanewperspectiveformicrobiomeanalysis AT jjegozcue balancesanewperspectiveformicrobiomeanalysis AT vpawlowskyglahn balancesanewperspectiveformicrobiomeanalysis AT rparedes balancesanewperspectiveformicrobiomeanalysis AT mnoguerajulian balancesanewperspectiveformicrobiomeanalysis AT mlcalle balancesanewperspectiveformicrobiomeanalysis |
_version_ |
1718377736176664576 |