A Modified HSIFT Descriptor for Medical Image Classification of Anatomy Objects
Modeling low level features to high level semantics in medical imaging is an important aspect in filtering anatomy objects. Bag of Visual Words (BOVW) representations have been proven effective to model these low level features to mid level representations. Convolutional neural nets are learning sys...
Guardado en:
Autores principales: | Sumeer Ahmad Khan, Yonis Gulzar, Sherzod Turaev, Young Suet Peng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4655ef7b4db9439bb9576e0dd8a3085d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Classification of EEG Signals using Fast Fourier Transform (FFT) and Adaptive Neuro Fuzzy Inference System (ANFIS)
por: Suwanto Suwanto, et al.
Publicado: (2019) -
Redundancy Is Not Necessarily Detrimental in Classification Problems
por: Sebastián Alberto Grillo, et al.
Publicado: (2021) -
Deep Spectral Spatial Inverted Residual Network for Hyperspectral Image Classification
por: Tianyu Zhang, et al.
Publicado: (2021) -
Visualization and categorization of ecological acoustic events based on discriminant features
por: Liz Maribel Huancapaza Hilasaca, et al.
Publicado: (2021) -
Evaluation of Keypoint Descriptors for Flight Simulator Cockpit Elements: WrightBroS Database
por: Karolina Nurzynska, et al.
Publicado: (2021)