Deep Learning Approaches for Impulse Noise Mitigation and Classification in NOMA-Based Systems
The new emerging networks such as smart grids, smart homes and Internet of Things have enabled user accessibility across the globe and employ non-orthogonal multiple access (NOMA) scheme to accommodate huge number of connected devices. These devices which include smart meters, sensors and actuators...
Guardado en:
Autores principales: | Muhammad Hussain, Hina Shakir, Haroon Rasheed |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/46560fc64c5946fbb572dedf7b3eb595 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Error Rate Comparison of Power Domain Non-Orthogonal Multiple Access and Sparse Code Multiple Access
por: Qu Luo, et al.
Publicado: (2021) -
Cooperative Non-Orthogonal Multiple Access for Beyond 5G Networks
por: Abbas Ahmed, et al.
Publicado: (2021) -
Cell-Free Massive MIMO System With an Adaptive Switching Algorithm Between Cooperative NOMA, Non-Cooperative NOMA, and OMA Modes
por: Reza Sayyari, et al.
Publicado: (2021) -
Capacity Analysis of NOMA-Enabled Underwater VLC Networks
por: Mohammed Elamassie, et al.
Publicado: (2021) -
Approximation of Capacity for Downlink Multi-User System with Combination of Precoding and NOMA Methods
por: Vu Van Son, et al.
Publicado: (2021)