Deep Learning Approaches for Impulse Noise Mitigation and Classification in NOMA-Based Systems
The new emerging networks such as smart grids, smart homes and Internet of Things have enabled user accessibility across the globe and employ non-orthogonal multiple access (NOMA) scheme to accommodate huge number of connected devices. These devices which include smart meters, sensors and actuators...
Enregistré dans:
| Auteurs principaux: | Muhammad Hussain, Hina Shakir, Haroon Rasheed |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
IEEE
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/46560fc64c5946fbb572dedf7b3eb595 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An Error Rate Comparison of Power Domain Non-Orthogonal Multiple Access and Sparse Code Multiple Access
par: Qu Luo, et autres
Publié: (2021) -
Cooperative Non-Orthogonal Multiple Access for Beyond 5G Networks
par: Abbas Ahmed, et autres
Publié: (2021) -
Cell-Free Massive MIMO System With an Adaptive Switching Algorithm Between Cooperative NOMA, Non-Cooperative NOMA, and OMA Modes
par: Reza Sayyari, et autres
Publié: (2021) -
Capacity Analysis of NOMA-Enabled Underwater VLC Networks
par: Mohammed Elamassie, et autres
Publié: (2021) -
Approximation of Capacity for Downlink Multi-User System with Combination of Precoding and NOMA Methods
par: Vu Van Son, et autres
Publié: (2021)