Biochemical and morphological attributes of broiler kidney in response to dietary glucocorticoid, dexamethasone

Glucocorticoids (GCs) initiate oxidative stress and cause renal damage which lead to hypertension, heart failure and ultimately death. The current study aimed to investigate the alterations in serum biochemical parameters i.e. HDL and LDL; gross anatomy, histomorphology and histomorphometry of broil...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nasrin Sultana, Rafiqul Islam, Antora Akter, Ummay Ayman, Sonali Bhakta, Sharmin Aqter Rony, Azimun Nahar, Rafiqul Alam
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/466fcd1c17ef4a33acb0bda720ace474
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Glucocorticoids (GCs) initiate oxidative stress and cause renal damage which lead to hypertension, heart failure and ultimately death. The current study aimed to investigate the alterations in serum biochemical parameters i.e. HDL and LDL; gross anatomy, histomorphology and histomorphometry of broiler kidney in response to dietary GC, dexamethasone (DEX). Day old chicks (DOCs) were randomly assigned into four groups: control and three treatment groups (T1, T2 and T3). The control group was fed commercial broiler type ration and the treated groups were fed commercial broiler type ration containing GC (Dexamethasone @ 3, 5 and 7 mg/kg in T1, T2 and T3 group respectively). To measure the biochemical parameters, blood samples were collected on days 7, 14, 21, and 28 of the experiment. For histological investigation, kidney (left) samples were collected from the individual birds after sacrificing on days 7, 14, 21, and 28 of the experiment. Histomorphological alterations of the kidney were assessed by routine hematoxylin and eosin (H&E) staining. Biochemical analysis showed significantly increased serum HDL and LDL level compared to the control. In gross study, dark congested kidney was found with significantly decreased weight, length and width. Treatment with DEX augmented congestion, inflammation and fibrosis in kidney, as evidence by histomorphometric study. Extensively degenerated and atrophied glomeruli, degenerated tubular epithelium with distorted tubules and inter tubular empty spaces were seen. Percentage of atrophied glomeruli increased significantly and maximum percentage of glomerular atrophy was seen at day 28. These changes were found more explicitly in the higher dose group. Histomorphometric study also revealed significant decrease in the diameter of glomerulus. The findings of this study suggest that DEX may alter the serum biochemical parameters as well as kidney gross and histomorphology.