Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium

Abstract Using a sample from a terrestrial hot spring (pH 6.8, 60 °C), we enriched a thermophilic microbial consortium performing anaerobic autotrophic oxidation of hydrothermal siderite (FeCO3), with CO2/bicarbonate as the electron acceptor and the only carbon source, producing green rust and aceta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daria G. Zavarzina, Tatiana V. Kochetkova, Nataliya I. Chistyakova, Maria A. Gracheva, Angelina V. Antonova, Alexander Yu. Merkel, Anna A. Perevalova, Michail S. Chernov, Yury A. Koksharov, Elizaveta A. Bonch-Osmolovskaya, Sergey N. Gavrilov, Andrey Yu. Bychkov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/467158200102401295cadef50c688ba8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:467158200102401295cadef50c688ba8
record_format dspace
spelling oai:doaj.org-article:467158200102401295cadef50c688ba82021-12-02T11:43:51ZSiderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium10.1038/s41598-020-78605-72045-2322https://doaj.org/article/467158200102401295cadef50c688ba82020-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-78605-7https://doaj.org/toc/2045-2322Abstract Using a sample from a terrestrial hot spring (pH 6.8, 60 °C), we enriched a thermophilic microbial consortium performing anaerobic autotrophic oxidation of hydrothermal siderite (FeCO3), with CO2/bicarbonate as the electron acceptor and the only carbon source, producing green rust and acetate. In order to reproduce Proterozoic environmental conditions during the deposition of banded iron formation (BIF), we incubated the microbial consortium in a bioreactor that contained an unmixed anoxic layer of siderite, perfectly mixed N2/CO2-saturated liquid medium and microoxic (2% O2) headspace. Long-term incubation (56 days) led to the formation of magnetite (Fe3O4) instead of green rust as the main product of Fe(II) oxidation, the precipitation of newly formed metabolically induced siderite in the anoxic zone, and the deposition of hematite (Fe2O3) on bioreactor walls over the oxycline boundary. Acetate was the only metabolic product of CO2/bicarbonate reduction. Thus, we have demonstrated the ability of autotrophic thermophilic microbial consortium to perform a short cycle of iron minerals transformation: siderite–magnetite–siderite, accompanied by magnetite and hematite accumulation. This cycle is believed to have driven the evolution of the early biosphere, leading to primary biomass production and deposition of the main iron mineral association of BIF.Daria G. ZavarzinaTatiana V. KochetkovaNataliya I. ChistyakovaMaria A. GrachevaAngelina V. AntonovaAlexander Yu. MerkelAnna A. PerevalovaMichail S. ChernovYury A. KoksharovElizaveta A. Bonch-OsmolovskayaSergey N. GavrilovAndrey Yu. BychkovNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Daria G. Zavarzina
Tatiana V. Kochetkova
Nataliya I. Chistyakova
Maria A. Gracheva
Angelina V. Antonova
Alexander Yu. Merkel
Anna A. Perevalova
Michail S. Chernov
Yury A. Koksharov
Elizaveta A. Bonch-Osmolovskaya
Sergey N. Gavrilov
Andrey Yu. Bychkov
Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium
description Abstract Using a sample from a terrestrial hot spring (pH 6.8, 60 °C), we enriched a thermophilic microbial consortium performing anaerobic autotrophic oxidation of hydrothermal siderite (FeCO3), with CO2/bicarbonate as the electron acceptor and the only carbon source, producing green rust and acetate. In order to reproduce Proterozoic environmental conditions during the deposition of banded iron formation (BIF), we incubated the microbial consortium in a bioreactor that contained an unmixed anoxic layer of siderite, perfectly mixed N2/CO2-saturated liquid medium and microoxic (2% O2) headspace. Long-term incubation (56 days) led to the formation of magnetite (Fe3O4) instead of green rust as the main product of Fe(II) oxidation, the precipitation of newly formed metabolically induced siderite in the anoxic zone, and the deposition of hematite (Fe2O3) on bioreactor walls over the oxycline boundary. Acetate was the only metabolic product of CO2/bicarbonate reduction. Thus, we have demonstrated the ability of autotrophic thermophilic microbial consortium to perform a short cycle of iron minerals transformation: siderite–magnetite–siderite, accompanied by magnetite and hematite accumulation. This cycle is believed to have driven the evolution of the early biosphere, leading to primary biomass production and deposition of the main iron mineral association of BIF.
format article
author Daria G. Zavarzina
Tatiana V. Kochetkova
Nataliya I. Chistyakova
Maria A. Gracheva
Angelina V. Antonova
Alexander Yu. Merkel
Anna A. Perevalova
Michail S. Chernov
Yury A. Koksharov
Elizaveta A. Bonch-Osmolovskaya
Sergey N. Gavrilov
Andrey Yu. Bychkov
author_facet Daria G. Zavarzina
Tatiana V. Kochetkova
Nataliya I. Chistyakova
Maria A. Gracheva
Angelina V. Antonova
Alexander Yu. Merkel
Anna A. Perevalova
Michail S. Chernov
Yury A. Koksharov
Elizaveta A. Bonch-Osmolovskaya
Sergey N. Gavrilov
Andrey Yu. Bychkov
author_sort Daria G. Zavarzina
title Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium
title_short Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium
title_full Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium
title_fullStr Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium
title_full_unstemmed Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium
title_sort siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/467158200102401295cadef50c688ba8
work_keys_str_mv AT dariagzavarzina sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium
AT tatianavkochetkova sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium
AT nataliyaichistyakova sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium
AT mariaagracheva sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium
AT angelinavantonova sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium
AT alexanderyumerkel sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium
AT annaaperevalova sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium
AT michailschernov sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium
AT yuryakoksharov sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium
AT elizavetaabonchosmolovskaya sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium
AT sergeyngavrilov sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium
AT andreyyubychkov sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium
_version_ 1718395337557671936