Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium
Abstract Using a sample from a terrestrial hot spring (pH 6.8, 60 °C), we enriched a thermophilic microbial consortium performing anaerobic autotrophic oxidation of hydrothermal siderite (FeCO3), with CO2/bicarbonate as the electron acceptor and the only carbon source, producing green rust and aceta...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/467158200102401295cadef50c688ba8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:467158200102401295cadef50c688ba8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:467158200102401295cadef50c688ba82021-12-02T11:43:51ZSiderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium10.1038/s41598-020-78605-72045-2322https://doaj.org/article/467158200102401295cadef50c688ba82020-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-78605-7https://doaj.org/toc/2045-2322Abstract Using a sample from a terrestrial hot spring (pH 6.8, 60 °C), we enriched a thermophilic microbial consortium performing anaerobic autotrophic oxidation of hydrothermal siderite (FeCO3), with CO2/bicarbonate as the electron acceptor and the only carbon source, producing green rust and acetate. In order to reproduce Proterozoic environmental conditions during the deposition of banded iron formation (BIF), we incubated the microbial consortium in a bioreactor that contained an unmixed anoxic layer of siderite, perfectly mixed N2/CO2-saturated liquid medium and microoxic (2% O2) headspace. Long-term incubation (56 days) led to the formation of magnetite (Fe3O4) instead of green rust as the main product of Fe(II) oxidation, the precipitation of newly formed metabolically induced siderite in the anoxic zone, and the deposition of hematite (Fe2O3) on bioreactor walls over the oxycline boundary. Acetate was the only metabolic product of CO2/bicarbonate reduction. Thus, we have demonstrated the ability of autotrophic thermophilic microbial consortium to perform a short cycle of iron minerals transformation: siderite–magnetite–siderite, accompanied by magnetite and hematite accumulation. This cycle is believed to have driven the evolution of the early biosphere, leading to primary biomass production and deposition of the main iron mineral association of BIF.Daria G. ZavarzinaTatiana V. KochetkovaNataliya I. ChistyakovaMaria A. GrachevaAngelina V. AntonovaAlexander Yu. MerkelAnna A. PerevalovaMichail S. ChernovYury A. KoksharovElizaveta A. Bonch-OsmolovskayaSergey N. GavrilovAndrey Yu. BychkovNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Daria G. Zavarzina Tatiana V. Kochetkova Nataliya I. Chistyakova Maria A. Gracheva Angelina V. Antonova Alexander Yu. Merkel Anna A. Perevalova Michail S. Chernov Yury A. Koksharov Elizaveta A. Bonch-Osmolovskaya Sergey N. Gavrilov Andrey Yu. Bychkov Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium |
description |
Abstract Using a sample from a terrestrial hot spring (pH 6.8, 60 °C), we enriched a thermophilic microbial consortium performing anaerobic autotrophic oxidation of hydrothermal siderite (FeCO3), with CO2/bicarbonate as the electron acceptor and the only carbon source, producing green rust and acetate. In order to reproduce Proterozoic environmental conditions during the deposition of banded iron formation (BIF), we incubated the microbial consortium in a bioreactor that contained an unmixed anoxic layer of siderite, perfectly mixed N2/CO2-saturated liquid medium and microoxic (2% O2) headspace. Long-term incubation (56 days) led to the formation of magnetite (Fe3O4) instead of green rust as the main product of Fe(II) oxidation, the precipitation of newly formed metabolically induced siderite in the anoxic zone, and the deposition of hematite (Fe2O3) on bioreactor walls over the oxycline boundary. Acetate was the only metabolic product of CO2/bicarbonate reduction. Thus, we have demonstrated the ability of autotrophic thermophilic microbial consortium to perform a short cycle of iron minerals transformation: siderite–magnetite–siderite, accompanied by magnetite and hematite accumulation. This cycle is believed to have driven the evolution of the early biosphere, leading to primary biomass production and deposition of the main iron mineral association of BIF. |
format |
article |
author |
Daria G. Zavarzina Tatiana V. Kochetkova Nataliya I. Chistyakova Maria A. Gracheva Angelina V. Antonova Alexander Yu. Merkel Anna A. Perevalova Michail S. Chernov Yury A. Koksharov Elizaveta A. Bonch-Osmolovskaya Sergey N. Gavrilov Andrey Yu. Bychkov |
author_facet |
Daria G. Zavarzina Tatiana V. Kochetkova Nataliya I. Chistyakova Maria A. Gracheva Angelina V. Antonova Alexander Yu. Merkel Anna A. Perevalova Michail S. Chernov Yury A. Koksharov Elizaveta A. Bonch-Osmolovskaya Sergey N. Gavrilov Andrey Yu. Bychkov |
author_sort |
Daria G. Zavarzina |
title |
Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium |
title_short |
Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium |
title_full |
Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium |
title_fullStr |
Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium |
title_full_unstemmed |
Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium |
title_sort |
siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/467158200102401295cadef50c688ba8 |
work_keys_str_mv |
AT dariagzavarzina sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium AT tatianavkochetkova sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium AT nataliyaichistyakova sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium AT mariaagracheva sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium AT angelinavantonova sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium AT alexanderyumerkel sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium AT annaaperevalova sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium AT michailschernov sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium AT yuryakoksharov sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium AT elizavetaabonchosmolovskaya sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium AT sergeyngavrilov sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium AT andreyyubychkov sideritebasedanaerobicironcycledrivenbyautotrophicthermophilicmicrobialconsortium |
_version_ |
1718395337557671936 |