Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging
Abstract Developments in metamaterials and related structures such as metasurfaces have opened up new possibilities in designing materials and devices with unique properties. Here we report a new hybrid metasurface structure, comprising a two-dimensional metamaterial surface and a very high permitti...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/46735aa21754433cb6b84dbce0545dd5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Developments in metamaterials and related structures such as metasurfaces have opened up new possibilities in designing materials and devices with unique properties. Here we report a new hybrid metasurface structure, comprising a two-dimensional metamaterial surface and a very high permittivity dielectric substrate, that has been designed to enhance the local performance of an ultra-high field MRI scanner. This new flexible and compact resonant structure is the first metasurface which can be integrated with multi-element close-fitting receive coil arrays that are used for all clinical MRI scans. We demonstrate the utility of the metasurface acquiring in-vivo human brain images and proton MR spectra with enhanced local sensitivity on a commercial 7 Tesla system. |
---|