Unified multimode modelling, stability analysis, and reinforced sliding‐mode design of high‐order buck/boost DC–DC converters for DC energy systems
Abstract Unified modelling, analysis, and reinforced sliding‐mode design of a high‐order buck/boost converter are proposed for DC energy systems. The high voltage gain with low current stress on the converter’s circuit components will noticeably improve its performance in DC energy systems. The math...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/46ac5ea1f1ee4c69b3a8c8ffbd0c8109 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:46ac5ea1f1ee4c69b3a8c8ffbd0c8109 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:46ac5ea1f1ee4c69b3a8c8ffbd0c81092021-11-11T13:07:32ZUnified multimode modelling, stability analysis, and reinforced sliding‐mode design of high‐order buck/boost DC–DC converters for DC energy systems2516-840110.1049/esi2.12023https://doaj.org/article/46ac5ea1f1ee4c69b3a8c8ffbd0c81092021-12-01T00:00:00Zhttps://doi.org/10.1049/esi2.12023https://doaj.org/toc/2516-8401Abstract Unified modelling, analysis, and reinforced sliding‐mode design of a high‐order buck/boost converter are proposed for DC energy systems. The high voltage gain with low current stress on the converter’s circuit components will noticeably improve its performance in DC energy systems. The mathematical model of this multimode converter is established by deploying the averaging state‐space modelling approach and a duty‐ratio constraint‐deriving method. According to the unified multimode model, a reinforced sliding‐mode controller is proposed for this converter, and the sliding surface is designed using the estimated load information. A complete stability analysis of the reinforced sliding‐mode regulated converter system is also carried out. In addition, a hardware‐based comparison study involving the proposed controller and an existing robust sliding‐mode controller is provided to validate the effectiveness of the unified workflow involving modelling, analysis, and regulation design.Chaoyu DongWentao JiangZhishuang WangFuxin JiangHongjie JiaWileyarticleProduction of electric energy or power. Powerplants. Central stationsTK1001-1841Energy industries. Energy policy. Fuel tradeHD9502-9502.5ENIET Energy Systems Integration, Vol 3, Iss 4, Pp 397-412 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Production of electric energy or power. Powerplants. Central stations TK1001-1841 Energy industries. Energy policy. Fuel trade HD9502-9502.5 |
spellingShingle |
Production of electric energy or power. Powerplants. Central stations TK1001-1841 Energy industries. Energy policy. Fuel trade HD9502-9502.5 Chaoyu Dong Wentao Jiang Zhishuang Wang Fuxin Jiang Hongjie Jia Unified multimode modelling, stability analysis, and reinforced sliding‐mode design of high‐order buck/boost DC–DC converters for DC energy systems |
description |
Abstract Unified modelling, analysis, and reinforced sliding‐mode design of a high‐order buck/boost converter are proposed for DC energy systems. The high voltage gain with low current stress on the converter’s circuit components will noticeably improve its performance in DC energy systems. The mathematical model of this multimode converter is established by deploying the averaging state‐space modelling approach and a duty‐ratio constraint‐deriving method. According to the unified multimode model, a reinforced sliding‐mode controller is proposed for this converter, and the sliding surface is designed using the estimated load information. A complete stability analysis of the reinforced sliding‐mode regulated converter system is also carried out. In addition, a hardware‐based comparison study involving the proposed controller and an existing robust sliding‐mode controller is provided to validate the effectiveness of the unified workflow involving modelling, analysis, and regulation design. |
format |
article |
author |
Chaoyu Dong Wentao Jiang Zhishuang Wang Fuxin Jiang Hongjie Jia |
author_facet |
Chaoyu Dong Wentao Jiang Zhishuang Wang Fuxin Jiang Hongjie Jia |
author_sort |
Chaoyu Dong |
title |
Unified multimode modelling, stability analysis, and reinforced sliding‐mode design of high‐order buck/boost DC–DC converters for DC energy systems |
title_short |
Unified multimode modelling, stability analysis, and reinforced sliding‐mode design of high‐order buck/boost DC–DC converters for DC energy systems |
title_full |
Unified multimode modelling, stability analysis, and reinforced sliding‐mode design of high‐order buck/boost DC–DC converters for DC energy systems |
title_fullStr |
Unified multimode modelling, stability analysis, and reinforced sliding‐mode design of high‐order buck/boost DC–DC converters for DC energy systems |
title_full_unstemmed |
Unified multimode modelling, stability analysis, and reinforced sliding‐mode design of high‐order buck/boost DC–DC converters for DC energy systems |
title_sort |
unified multimode modelling, stability analysis, and reinforced sliding‐mode design of high‐order buck/boost dc–dc converters for dc energy systems |
publisher |
Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/46ac5ea1f1ee4c69b3a8c8ffbd0c8109 |
work_keys_str_mv |
AT chaoyudong unifiedmultimodemodellingstabilityanalysisandreinforcedslidingmodedesignofhighorderbuckboostdcdcconvertersfordcenergysystems AT wentaojiang unifiedmultimodemodellingstabilityanalysisandreinforcedslidingmodedesignofhighorderbuckboostdcdcconvertersfordcenergysystems AT zhishuangwang unifiedmultimodemodellingstabilityanalysisandreinforcedslidingmodedesignofhighorderbuckboostdcdcconvertersfordcenergysystems AT fuxinjiang unifiedmultimodemodellingstabilityanalysisandreinforcedslidingmodedesignofhighorderbuckboostdcdcconvertersfordcenergysystems AT hongjiejia unifiedmultimodemodellingstabilityanalysisandreinforcedslidingmodedesignofhighorderbuckboostdcdcconvertersfordcenergysystems |
_version_ |
1718439030392094720 |