Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer

Advances in omics technology have resulted in the generation of multi-view data for cancer samples. Here, the authors compare dimensionality reduction techniques using simulated and TCGA data and identify the features of the methods with superior performance.

Guardado en:
Detalles Bibliográficos
Autores principales: Laura Cantini, Pooya Zakeri, Celine Hernandez, Aurelien Naldi, Denis Thieffry, Elisabeth Remy, Anaïs Baudot
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/46bcfde47530473dae0c303f24558469
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Advances in omics technology have resulted in the generation of multi-view data for cancer samples. Here, the authors compare dimensionality reduction techniques using simulated and TCGA data and identify the features of the methods with superior performance.