Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer

Advances in omics technology have resulted in the generation of multi-view data for cancer samples. Here, the authors compare dimensionality reduction techniques using simulated and TCGA data and identify the features of the methods with superior performance.

Guardado en:
Detalles Bibliográficos
Autores principales: Laura Cantini, Pooya Zakeri, Celine Hernandez, Aurelien Naldi, Denis Thieffry, Elisabeth Remy, Anaïs Baudot
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/46bcfde47530473dae0c303f24558469
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:46bcfde47530473dae0c303f24558469
record_format dspace
spelling oai:doaj.org-article:46bcfde47530473dae0c303f245584692021-12-02T15:16:22ZBenchmarking joint multi-omics dimensionality reduction approaches for the study of cancer10.1038/s41467-020-20430-72041-1723https://doaj.org/article/46bcfde47530473dae0c303f245584692021-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-20430-7https://doaj.org/toc/2041-1723Advances in omics technology have resulted in the generation of multi-view data for cancer samples. Here, the authors compare dimensionality reduction techniques using simulated and TCGA data and identify the features of the methods with superior performance.Laura CantiniPooya ZakeriCeline HernandezAurelien NaldiDenis ThieffryElisabeth RemyAnaïs BaudotNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Laura Cantini
Pooya Zakeri
Celine Hernandez
Aurelien Naldi
Denis Thieffry
Elisabeth Remy
Anaïs Baudot
Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer
description Advances in omics technology have resulted in the generation of multi-view data for cancer samples. Here, the authors compare dimensionality reduction techniques using simulated and TCGA data and identify the features of the methods with superior performance.
format article
author Laura Cantini
Pooya Zakeri
Celine Hernandez
Aurelien Naldi
Denis Thieffry
Elisabeth Remy
Anaïs Baudot
author_facet Laura Cantini
Pooya Zakeri
Celine Hernandez
Aurelien Naldi
Denis Thieffry
Elisabeth Remy
Anaïs Baudot
author_sort Laura Cantini
title Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer
title_short Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer
title_full Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer
title_fullStr Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer
title_full_unstemmed Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer
title_sort benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/46bcfde47530473dae0c303f24558469
work_keys_str_mv AT lauracantini benchmarkingjointmultiomicsdimensionalityreductionapproachesforthestudyofcancer
AT pooyazakeri benchmarkingjointmultiomicsdimensionalityreductionapproachesforthestudyofcancer
AT celinehernandez benchmarkingjointmultiomicsdimensionalityreductionapproachesforthestudyofcancer
AT aureliennaldi benchmarkingjointmultiomicsdimensionalityreductionapproachesforthestudyofcancer
AT denisthieffry benchmarkingjointmultiomicsdimensionalityreductionapproachesforthestudyofcancer
AT elisabethremy benchmarkingjointmultiomicsdimensionalityreductionapproachesforthestudyofcancer
AT anaisbaudot benchmarkingjointmultiomicsdimensionalityreductionapproachesforthestudyofcancer
_version_ 1718387503954657280