Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer
Advances in omics technology have resulted in the generation of multi-view data for cancer samples. Here, the authors compare dimensionality reduction techniques using simulated and TCGA data and identify the features of the methods with superior performance.
Guardado en:
Autores principales: | Laura Cantini, Pooya Zakeri, Celine Hernandez, Aurelien Naldi, Denis Thieffry, Elisabeth Remy, Anaïs Baudot |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/46bcfde47530473dae0c303f24558469 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MultiVERSE: a multiplex and multiplex-heterogeneous network embedding approach
por: Léo Pio-Lopez, et al.
Publicado: (2021) -
Systematic benchmarking of omics computational tools
por: Serghei Mangul, et al.
Publicado: (2019) -
Diversity and plasticity of Th cell types predicted from regulatory network modelling.
por: Aurélien Naldi, et al.
Publicado: (2010) -
Editorial: Multi-Omics Approaches to Study Placental Development and Disease
por: Geetu Tuteja, et al.
Publicado: (2021) -
Multi-Omics for the Understanding of Brain Diseases
por: Chiara Villa, et al.
Publicado: (2021)