Supersymmetric $$AdS_4$$ A d S 4 black holes from matter-coupled $$N=3,4$$ N = 3 , 4 gauged supergravities

Abstract We study supersymmetric $$AdS_4$$ A d S 4 black holes in matter-coupled $$N=3$$ N = 3 and $$N=4$$ N = 4 gauged supergravities in four dimensions. In $$N=3$$ N = 3 theory, we consider $$N=3$$ N = 3 gauged supergravity coupled to three vector multiplets and $$SO(3)\times SO(3)$$ S O ( 3 ) × S...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Parinya Karndumri
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/46d7f23cf8714197825f0d3dc101bc53
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We study supersymmetric $$AdS_4$$ A d S 4 black holes in matter-coupled $$N=3$$ N = 3 and $$N=4$$ N = 4 gauged supergravities in four dimensions. In $$N=3$$ N = 3 theory, we consider $$N=3$$ N = 3 gauged supergravity coupled to three vector multiplets and $$SO(3)\times SO(3)$$ S O ( 3 ) × S O ( 3 ) gauge group. The resulting gauged supergravity admits two $$N=3$$ N = 3 supersymmetric $$AdS_4$$ A d S 4 vacua with $$SO(3)\times SO(3)$$ S O ( 3 ) × S O ( 3 ) and SO(3) symmetries. We find an $$AdS_2\times H^2$$ A d S 2 × H 2 solution with $$SO(2)\times SO(2)$$ S O ( 2 ) × S O ( 2 ) symmetry and an analytic solution interpolating between this geometry and the $$SO(3)\times SO(3)$$ S O ( 3 ) × S O ( 3 ) symmetric $$AdS_4$$ A d S 4 vacuum. For $$N=4$$ N = 4 gauged supergravity coupled to six vector multiplets with $$SO(4)\times SO(4)$$ S O ( 4 ) × S O ( 4 ) gauge group, there exist four supersymmetric $$AdS_4$$ A d S 4 vacua with $$SO(4)\times SO(4)$$ S O ( 4 ) × S O ( 4 ) , $$SO(4)\times SO(3)$$ S O ( 4 ) × S O ( 3 ) , $$SO(3)\times SO(4)$$ S O ( 3 ) × S O ( 4 ) and $$SO(3)\times SO(3)$$ S O ( 3 ) × S O ( 3 ) symmetries. We find a number of $$AdS_2\times S^2$$ A d S 2 × S 2 and $$AdS_2\times H^2$$ A d S 2 × H 2 geometries together with the solutions interpolating between these geometries and all, but the $$SO(3)\times SO(3)$$ S O ( 3 ) × S O ( 3 ) , $$AdS_4$$ A d S 4 vacua. These solutions provide a new class of $$AdS_4$$ A d S 4 black holes with spherical and hyperbolic horizons dual to holographic RG flows across dimensions from $$N=3,4$$ N = 3 , 4 SCFTs in three dimensions to superconformal quantum mechanics within the framework of four-dimensional gauged supergravity.