Stochastic Modeling for Estimating Real-Time Inundation Depths at Roadside IoT Sensors Using the ANN-Derived Model
This paper aims to develop a stochastic model (SM_EID_IOT) for estimating the inundation depths and associated 95% confidence intervals at the specific locations of the roadside water-level gauges, i.e., Internet of Things (IoT) sensors under the observed water levels/rainfalls and the precipitation...
Guardado en:
Autores principales: | Shiang-Jen Wu, Chih-Tsu Hsu, Che-Hao Chang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/46e8c0e8c657495388a3a28f87a9f9b2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A New Hybrid Online and Offline Multi-Factor Cross-Domain Authentication Method for IoT Applications in the Automotive Industry
por: Haqi Khalid, et al.
Publicado: (2021) -
Prioritizing Enabling Factors of IoT Adoption for Sustainability in Supply Chain Management
por: Sittiporn Pimsakul, et al.
Publicado: (2021) -
Industry Platforms as Facilitators of Disruptive IoT Innovations
por: Ionut Pirvan,Cristian, et al.
Publicado: (2019) -
MADS Based on DL Techniques on the Internet of Things (IoT): Survey
por: Hussah Talal, et al.
Publicado: (2021) -
Beyond the Horizon, Backhaul Connectivity for Offshore IoT Devices
por: Khurram Shabih Zaidi, et al.
Publicado: (2021)