Improving radiologist's ability in identifying particular abnormal lesions on mammograms through training test set with immediate feedback
Abstract It has been shown that there are differences in diagnostic accuracy of cancer detection on mammograms, from below 50% in developing countries to over 80% in developed world. One previous study reported that radiologists from a population in Asia displayed a low mammographic cancer detection...
Guardado en:
Autores principales: | Phuong Dung (Yun) Trieu, Sarah J. Lewis, Tong Li, Karen Ho, Dennis J. Wong, Oanh T. M. Tran, Louise Puslednik, Deborah Black, Patrick C. Brennan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/46ebad74dc0546fab67bc3fd0f86dbc0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Radiologist
Publicado: (1994) -
Canadian Association of Radiologists journal Journal l'Association canadienne des radiologistes.
Publicado: (1986) -
Odontoameloblastoma: A Diagnostic Dilemma for Maxillofacial Radiologist
por: Kumar,Kiran, et al.
Publicado: (2013) -
Impact of image compression on deep learning-based mammogram classification
por: Yong-Yeon Jo, et al.
Publicado: (2021) -
An automated mammogram classification system using modified support vector machine
por: Kayode AA, et al.
Publicado: (2019)