ST-BFL: A Structured Transparency Empowered Cross-Silo Federated Learning on the Blockchain Framework
Federated Learning (FL) relies on on-device training to avoid the migration of devices’ data to a centralized server to address privacy leakage. Moreover, FL is feasible for scenarios (e.g., autonomous cars) where an enormous amount of data is generated every day. Transferring only local...
Guardado en:
Autores principales: | Umer Majeed, Latif U. Khan, Abdullah Yousafzai, Zhu Han, Bang Ju Park, Choong Seon Hong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/46f427ed361841c381889c306c59b45a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bibliometrics of Machine Learning Research Using Homomorphic Encryption
por: Zhigang Chen, et al.
Publicado: (2021) -
DISTRIBUTION OF ETHEREUM BLOCKCHAIN ADDRESSES
por: A. Seitenov, et al.
Publicado: (2020) -
Blockchain Enabled Transparent and Anti-Counterfeiting Supply of COVID-19 Vaccine Vials
por: Harsha Chauhan, et al.
Publicado: (2021) -
A cloud-based framework for verifiable privacy-preserving spectrum auction
por: Ruinian Li, et al.
Publicado: (2022) -
A Blockchain-Supported Framework for Charging Management of Electric Vehicles
por: Marina Dorokhova, et al.
Publicado: (2021)