Decoding topologically associating domains with ultra-low resolution Hi-C data by graph structural entropy
Accurate detection of TADs requires ultra-deep sequencing and sophisticated normalisation procedures, which limits the analysis of Hi-C data. Here the authors develop a normalisation-free method to decode the domains of chromosomes (deDoc) that utilizes structural entropy to predict TADs with ultra-...
Guardado en:
Autores principales: | Angsheng Li, Xianchen Yin, Bingxiang Xu, Danyang Wang, Jimin Han, Yi Wei, Yun Deng, Ying Xiong, Zhihua Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/46fdb2762a7445d7993295e078768865 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains
por: Gil Ron, et al.
Publicado: (2017) -
Almost-linear time decoding algorithm for topological codes
por: Nicolas Delfosse, et al.
Publicado: (2021) -
Increased burden of ultra-rare structural variants localizing to boundaries of topologically associated domains in schizophrenia
por: Matthew Halvorsen, et al.
Publicado: (2020) -
Sarc-Graph: Automated segmentation, tracking, and analysis of sarcomeres in hiPSC-derived cardiomyocytes.
por: Bill Zhao, et al.
Publicado: (2021) -
Edge Weight-Based Entropy of Magnesium Iodide Graph
por: Maryam Salem Alatawi, et al.
Publicado: (2021)