Complementarity-based nonlinear programming techniques for optimal mixing in gas networks
We consider nonlinear and nonsmooth mixing aspects in gas transport optimization problems. As mixed-integer reformulations of pooling-type mixing models already render small-size instances computationally intractable, we investigate the applicability of smooth nonlinear programming techniques for eq...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/46fe41ee91ba46ccbd56fbfe84dedbbc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We consider nonlinear and nonsmooth mixing aspects in gas transport optimization problems. As mixed-integer reformulations of pooling-type mixing models already render small-size instances computationally intractable, we investigate the applicability of smooth nonlinear programming techniques for equivalent complementarity-based reformulations. Based on recent results for remodeling piecewise affine constraints using an inverse parametric quadratic programming approach, we show that classical stationarity concepts are meaningful for the resulting complementarity-based reformulation of the mixing equations. Further, we investigate in a numerical study the performance of this reformulation compared to a more compact complementarity-based one that does not feature such beneficial regularity properties. All computations are performed on publicly available data of real-world size problem instances from steady-state gas transport. |
---|