Wind Direction Retrieval Using Support Vector Machine from CYGNSS Sea Surface Data
In view of the difficulty of wind direction retrieval in the case of the large space and time span of the global sea surface, a method of sea surface wind direction retrieval using a support vector machine (SVM) is proposed. This paper uses the space-borne global navigation satellite systems reflect...
Guardado en:
Autores principales: | Yun Zhang, Xu Chen, Wanting Meng, Jiwei Yin, Yanling Han, Zhonghua Hong, Shuhu Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/46ffa8db561a4de489bd8a383ab32b6f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Improved CYGNSS Wind Speed Retrieval Using Significant Wave Height Correction
por: Daniel Pascual, et al.
Publicado: (2021) -
Temporal-Spatial Soil Moisture Estimation from CYGNSS Using Machine Learning Regression With a Preclassification Approach
por: Yan Jia, et al.
Publicado: (2021) -
Recent Progress on Vegetation Remote Sensing Using Spaceborne GNSS-Reflectometry
por: Xuerui Wu, et al.
Publicado: (2021) -
Daily Flood Monitoring Based on Spaceborne GNSS-R Data: A Case Study on Henan, China
por: Wentao Yang, et al.
Publicado: (2021) -
Comparison of Kernel Function on Support Vector Machine in Classification of Childbirth
por: Putroue Keumala Intan
Publicado: (2019)