HDC-Net: A hierarchical dilation convolutional network for retinal vessel segmentation.
The cardinal symptoms of some ophthalmic diseases observed through exceptional retinal blood vessels, such as retinal vein occlusion, diabetic retinopathy, etc. The advanced deep learning models used to obtain morphological and structural information of blood vessels automatically are conducive to t...
Guardado en:
Autores principales: | Xiaolong Hu, Liejun Wang, Shuli Cheng, Yongming Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/47022759f5ce458893b6ad4174ac7120 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography
por: Kritika Iyer, et al.
Publicado: (2021) -
MFI-Net: A multi-resolution fusion input network for retinal vessel segmentation.
por: Yun Jiang, et al.
Publicado: (2021) -
ChoroidNET: A Dense Dilated U-Net Model for Choroid Layer and Vessel Segmentation in Optical Coherence Tomography Images
por: Tin Tin Khaing, et al.
Publicado: (2021) -
Research Progress of Deep Learning in Retinal Vessel Segmentation
por: LI Lanlan1, ZHANG Xiaohui1, NIU Decao3, HU Yihuang1, ZHAO Tiesong1, WANG Dabiao2+
Publicado: (2021) -
Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network
por: Fan Fu, et al.
Publicado: (2020)