Lyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells
Background Probiotics can release bioactive substances known as postbiotics, which can inhibit pathogenic microorganisms, improve immunomodulation, reduce antioxidant production, and modulate the gut microbiota. Methods In this study, we evaluated the in vitro antimicrobial effects, antioxidant acti...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4712f489ceec499c8664199488a72a74 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4712f489ceec499c8664199488a72a74 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4712f489ceec499c8664199488a72a742021-12-02T15:05:21ZLyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells10.7717/peerj.125862167-8359https://doaj.org/article/4712f489ceec499c8664199488a72a742021-11-01T00:00:00Zhttps://peerj.com/articles/12586.pdfhttps://peerj.com/articles/12586/https://doaj.org/toc/2167-8359Background Probiotics can release bioactive substances known as postbiotics, which can inhibit pathogenic microorganisms, improve immunomodulation, reduce antioxidant production, and modulate the gut microbiota. Methods In this study, we evaluated the in vitro antimicrobial effects, antioxidant activity, and anti-inflammatory potential of 10 lyophilized cell-free supernatants (LCFS) of Lactobacillus isolates. LCFS was obtained via centrifugation and subsequent lyophilization of the supernatant collected from the culture medium ofeach isolate. The antibacterial and antibiofilm activities of the LCFS were determined using broth microdilution. The antioxidant potential was evaluated by measuring the total phenolic and flavonoid contents and 2,2-Diphennyl-1-picrylhydrazyl (DPPH) and 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+) radical scavenging activities. Results All the isolates were able to inhibit the four tested pathogens. The isolates exhibited strong antibiofilm activity and eradicated the biofilms formed by Acinetobacter buamannii and Escherichia coli. All the prepared Lactobacillus LCFS contained phenols and flavonoids and exhibited antioxidant activities in the DPPH and ABTS+ radical scavenging assays. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay revealed that LCFS was not cytotoxic to RAW 264.7 cells. In addition, the ten Lactobacillus LCFS decreased the production of nitric oxide. Conclusions All the isolates have beneficial properties. This research sheds light on the role of postbiotics in functional fermented foods and pharmaceutical products. Further research to elucidate the precise molecular mechanisms of action of probiotics is warranted.Phoomjai SornseneeMoragot ChatatikunWatcharapong MitsuwanKantapich KongpolNateelak KooltheatSasirat SohbenaleeSupawita PruksaphanratAmron MudpanChonticha RomyasamitPeerJ Inc.articleLactobacillusCell-free supernatantsAntibiofilmAntioxidantAnti-inflammatoryPostbioticsMedicineRENPeerJ, Vol 9, p e12586 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Lactobacillus Cell-free supernatants Antibiofilm Antioxidant Anti-inflammatory Postbiotics Medicine R |
spellingShingle |
Lactobacillus Cell-free supernatants Antibiofilm Antioxidant Anti-inflammatory Postbiotics Medicine R Phoomjai Sornsenee Moragot Chatatikun Watcharapong Mitsuwan Kantapich Kongpol Nateelak Kooltheat Sasirat Sohbenalee Supawita Pruksaphanrat Amron Mudpan Chonticha Romyasamit Lyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells |
description |
Background Probiotics can release bioactive substances known as postbiotics, which can inhibit pathogenic microorganisms, improve immunomodulation, reduce antioxidant production, and modulate the gut microbiota. Methods In this study, we evaluated the in vitro antimicrobial effects, antioxidant activity, and anti-inflammatory potential of 10 lyophilized cell-free supernatants (LCFS) of Lactobacillus isolates. LCFS was obtained via centrifugation and subsequent lyophilization of the supernatant collected from the culture medium ofeach isolate. The antibacterial and antibiofilm activities of the LCFS were determined using broth microdilution. The antioxidant potential was evaluated by measuring the total phenolic and flavonoid contents and 2,2-Diphennyl-1-picrylhydrazyl (DPPH) and 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+) radical scavenging activities. Results All the isolates were able to inhibit the four tested pathogens. The isolates exhibited strong antibiofilm activity and eradicated the biofilms formed by Acinetobacter buamannii and Escherichia coli. All the prepared Lactobacillus LCFS contained phenols and flavonoids and exhibited antioxidant activities in the DPPH and ABTS+ radical scavenging assays. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay revealed that LCFS was not cytotoxic to RAW 264.7 cells. In addition, the ten Lactobacillus LCFS decreased the production of nitric oxide. Conclusions All the isolates have beneficial properties. This research sheds light on the role of postbiotics in functional fermented foods and pharmaceutical products. Further research to elucidate the precise molecular mechanisms of action of probiotics is warranted. |
format |
article |
author |
Phoomjai Sornsenee Moragot Chatatikun Watcharapong Mitsuwan Kantapich Kongpol Nateelak Kooltheat Sasirat Sohbenalee Supawita Pruksaphanrat Amron Mudpan Chonticha Romyasamit |
author_facet |
Phoomjai Sornsenee Moragot Chatatikun Watcharapong Mitsuwan Kantapich Kongpol Nateelak Kooltheat Sasirat Sohbenalee Supawita Pruksaphanrat Amron Mudpan Chonticha Romyasamit |
author_sort |
Phoomjai Sornsenee |
title |
Lyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells |
title_short |
Lyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells |
title_full |
Lyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells |
title_fullStr |
Lyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells |
title_full_unstemmed |
Lyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells |
title_sort |
lyophilized cell-free supernatants of lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated raw 264.7 cells |
publisher |
PeerJ Inc. |
publishDate |
2021 |
url |
https://doaj.org/article/4712f489ceec499c8664199488a72a74 |
work_keys_str_mv |
AT phoomjaisornsenee lyophilizedcellfreesupernatantsoflactobacillusisolatesexhibitedantibiofilmantioxidantandreducesnitricoxideactivityinlipopolysaccharidestimulatedraw2647cells AT moragotchatatikun lyophilizedcellfreesupernatantsoflactobacillusisolatesexhibitedantibiofilmantioxidantandreducesnitricoxideactivityinlipopolysaccharidestimulatedraw2647cells AT watcharapongmitsuwan lyophilizedcellfreesupernatantsoflactobacillusisolatesexhibitedantibiofilmantioxidantandreducesnitricoxideactivityinlipopolysaccharidestimulatedraw2647cells AT kantapichkongpol lyophilizedcellfreesupernatantsoflactobacillusisolatesexhibitedantibiofilmantioxidantandreducesnitricoxideactivityinlipopolysaccharidestimulatedraw2647cells AT nateelakkooltheat lyophilizedcellfreesupernatantsoflactobacillusisolatesexhibitedantibiofilmantioxidantandreducesnitricoxideactivityinlipopolysaccharidestimulatedraw2647cells AT sasiratsohbenalee lyophilizedcellfreesupernatantsoflactobacillusisolatesexhibitedantibiofilmantioxidantandreducesnitricoxideactivityinlipopolysaccharidestimulatedraw2647cells AT supawitapruksaphanrat lyophilizedcellfreesupernatantsoflactobacillusisolatesexhibitedantibiofilmantioxidantandreducesnitricoxideactivityinlipopolysaccharidestimulatedraw2647cells AT amronmudpan lyophilizedcellfreesupernatantsoflactobacillusisolatesexhibitedantibiofilmantioxidantandreducesnitricoxideactivityinlipopolysaccharidestimulatedraw2647cells AT chonticharomyasamit lyophilizedcellfreesupernatantsoflactobacillusisolatesexhibitedantibiofilmantioxidantandreducesnitricoxideactivityinlipopolysaccharidestimulatedraw2647cells |
_version_ |
1718388826855964672 |