An Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three

We study the complete, compact, locally affine manifolds equipped with a <i>k</i>-symplectic structure, which are the quotients of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvar...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fanich El Mokhtar, Essabab Said
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/4726aececeea4d4ea9b4d52ea2d6fc87
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4726aececeea4d4ea9b4d52ea2d6fc87
record_format dspace
spelling oai:doaj.org-article:4726aececeea4d4ea9b4d52ea2d6fc872021-11-25T19:07:13ZAn Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three10.3390/sym131121592073-8994https://doaj.org/article/4726aececeea4d4ea9b4d52ea2d6fc872021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2159https://doaj.org/toc/2073-8994We study the complete, compact, locally affine manifolds equipped with a <i>k</i>-symplectic structure, which are the quotients of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></semantics></math></inline-formula> by a subgroup <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Γ</mi></semantics></math></inline-formula> of the affine group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>(</mo><mi>n</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></semantics></math></inline-formula> acting freely and properly discontinuously on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></semantics></math></inline-formula> and leaving invariant the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="italic">k</mi></semantics></math></inline-formula>-symplectic structure, then we construct and give some examples and properties of compact, complete, locally affine two-symplectic manifolds of dimension three.Fanich El MokhtarEssabab SaidMDPI AGarticle<i>k</i>-symplectic structurelocally affine manifoldsfoliationsLagrangian submanifoldsMathematicsQA1-939ENSymmetry, Vol 13, Iss 2159, p 2159 (2021)
institution DOAJ
collection DOAJ
language EN
topic <i>k</i>-symplectic structure
locally affine manifolds
foliations
Lagrangian submanifolds
Mathematics
QA1-939
spellingShingle <i>k</i>-symplectic structure
locally affine manifolds
foliations
Lagrangian submanifolds
Mathematics
QA1-939
Fanich El Mokhtar
Essabab Said
An Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three
description We study the complete, compact, locally affine manifolds equipped with a <i>k</i>-symplectic structure, which are the quotients of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></semantics></math></inline-formula> by a subgroup <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Γ</mi></semantics></math></inline-formula> of the affine group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>(</mo><mi>n</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></semantics></math></inline-formula> acting freely and properly discontinuously on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></semantics></math></inline-formula> and leaving invariant the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="italic">k</mi></semantics></math></inline-formula>-symplectic structure, then we construct and give some examples and properties of compact, complete, locally affine two-symplectic manifolds of dimension three.
format article
author Fanich El Mokhtar
Essabab Said
author_facet Fanich El Mokhtar
Essabab Said
author_sort Fanich El Mokhtar
title An Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three
title_short An Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three
title_full An Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three
title_fullStr An Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three
title_full_unstemmed An Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three
title_sort infinite family of compact, complete, and locally affine <i>k</i>-symplectic manifolds of dimension three
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/4726aececeea4d4ea9b4d52ea2d6fc87
work_keys_str_mv AT fanichelmokhtar aninfinitefamilyofcompactcompleteandlocallyaffineikisymplecticmanifoldsofdimensionthree
AT essababsaid aninfinitefamilyofcompactcompleteandlocallyaffineikisymplecticmanifoldsofdimensionthree
AT fanichelmokhtar infinitefamilyofcompactcompleteandlocallyaffineikisymplecticmanifoldsofdimensionthree
AT essababsaid infinitefamilyofcompactcompleteandlocallyaffineikisymplecticmanifoldsofdimensionthree
_version_ 1718410274610872320