An Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three
We study the complete, compact, locally affine manifolds equipped with a <i>k</i>-symplectic structure, which are the quotients of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvar...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4726aececeea4d4ea9b4d52ea2d6fc87 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4726aececeea4d4ea9b4d52ea2d6fc87 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4726aececeea4d4ea9b4d52ea2d6fc872021-11-25T19:07:13ZAn Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three10.3390/sym131121592073-8994https://doaj.org/article/4726aececeea4d4ea9b4d52ea2d6fc872021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2159https://doaj.org/toc/2073-8994We study the complete, compact, locally affine manifolds equipped with a <i>k</i>-symplectic structure, which are the quotients of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></semantics></math></inline-formula> by a subgroup <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Γ</mi></semantics></math></inline-formula> of the affine group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>(</mo><mi>n</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></semantics></math></inline-formula> acting freely and properly discontinuously on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></semantics></math></inline-formula> and leaving invariant the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="italic">k</mi></semantics></math></inline-formula>-symplectic structure, then we construct and give some examples and properties of compact, complete, locally affine two-symplectic manifolds of dimension three.Fanich El MokhtarEssabab SaidMDPI AGarticle<i>k</i>-symplectic structurelocally affine manifoldsfoliationsLagrangian submanifoldsMathematicsQA1-939ENSymmetry, Vol 13, Iss 2159, p 2159 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
<i>k</i>-symplectic structure locally affine manifolds foliations Lagrangian submanifolds Mathematics QA1-939 |
spellingShingle |
<i>k</i>-symplectic structure locally affine manifolds foliations Lagrangian submanifolds Mathematics QA1-939 Fanich El Mokhtar Essabab Said An Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three |
description |
We study the complete, compact, locally affine manifolds equipped with a <i>k</i>-symplectic structure, which are the quotients of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></semantics></math></inline-formula> by a subgroup <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Γ</mi></semantics></math></inline-formula> of the affine group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>(</mo><mi>n</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></semantics></math></inline-formula> acting freely and properly discontinuously on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></semantics></math></inline-formula> and leaving invariant the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="italic">k</mi></semantics></math></inline-formula>-symplectic structure, then we construct and give some examples and properties of compact, complete, locally affine two-symplectic manifolds of dimension three. |
format |
article |
author |
Fanich El Mokhtar Essabab Said |
author_facet |
Fanich El Mokhtar Essabab Said |
author_sort |
Fanich El Mokhtar |
title |
An Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three |
title_short |
An Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three |
title_full |
An Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three |
title_fullStr |
An Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three |
title_full_unstemmed |
An Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three |
title_sort |
infinite family of compact, complete, and locally affine <i>k</i>-symplectic manifolds of dimension three |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/4726aececeea4d4ea9b4d52ea2d6fc87 |
work_keys_str_mv |
AT fanichelmokhtar aninfinitefamilyofcompactcompleteandlocallyaffineikisymplecticmanifoldsofdimensionthree AT essababsaid aninfinitefamilyofcompactcompleteandlocallyaffineikisymplecticmanifoldsofdimensionthree AT fanichelmokhtar infinitefamilyofcompactcompleteandlocallyaffineikisymplecticmanifoldsofdimensionthree AT essababsaid infinitefamilyofcompactcompleteandlocallyaffineikisymplecticmanifoldsofdimensionthree |
_version_ |
1718410274610872320 |