Justifying Born’s Rule <i>P<sub>α</sub></i> = |Ψ<i><sub>α</sub></i>|<sup>2</sup> Using Deterministic Chaos, Decoherence, and the de Broglie–Bohm Quantum Theory
In this work, we derive Born’s rule from the pilot-wave theory of de Broglie and Bohm. Based on a toy model involving a particle coupled to an environment made of “qubits” (i.e., Bohmian pointers), we show that entanglement together with deterministic chaos leads to a fast relaxation from any statis...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/473ca24e127e497fa693f04ace7eb9ed |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:473ca24e127e497fa693f04ace7eb9ed |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:473ca24e127e497fa693f04ace7eb9ed2021-11-25T17:29:05ZJustifying Born’s Rule <i>P<sub>α</sub></i> = |Ψ<i><sub>α</sub></i>|<sup>2</sup> Using Deterministic Chaos, Decoherence, and the de Broglie–Bohm Quantum Theory10.3390/e231113711099-4300https://doaj.org/article/473ca24e127e497fa693f04ace7eb9ed2021-10-01T00:00:00Zhttps://www.mdpi.com/1099-4300/23/11/1371https://doaj.org/toc/1099-4300In this work, we derive Born’s rule from the pilot-wave theory of de Broglie and Bohm. Based on a toy model involving a particle coupled to an environment made of “qubits” (i.e., Bohmian pointers), we show that entanglement together with deterministic chaos leads to a fast relaxation from any statistical distribution <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> of finding a particle at point <i>x</i> to the Born probability law <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mo>|</mo><mo>Ψ</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow><mn>2</mn></msup></semantics></math></inline-formula>. Our model is discussed in the context of Boltzmann’s kinetic theory, and we demonstrate a kind of H theorem for the relaxation to the quantum equilibrium regime.Aurélien DrezetMDPI AGarticlequantum probabilitypilot-wave mechanicsentanglementdeterministic chaosScienceQAstrophysicsQB460-466PhysicsQC1-999ENEntropy, Vol 23, Iss 1371, p 1371 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
quantum probability pilot-wave mechanics entanglement deterministic chaos Science Q Astrophysics QB460-466 Physics QC1-999 |
spellingShingle |
quantum probability pilot-wave mechanics entanglement deterministic chaos Science Q Astrophysics QB460-466 Physics QC1-999 Aurélien Drezet Justifying Born’s Rule <i>P<sub>α</sub></i> = |Ψ<i><sub>α</sub></i>|<sup>2</sup> Using Deterministic Chaos, Decoherence, and the de Broglie–Bohm Quantum Theory |
description |
In this work, we derive Born’s rule from the pilot-wave theory of de Broglie and Bohm. Based on a toy model involving a particle coupled to an environment made of “qubits” (i.e., Bohmian pointers), we show that entanglement together with deterministic chaos leads to a fast relaxation from any statistical distribution <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> of finding a particle at point <i>x</i> to the Born probability law <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mo>|</mo><mo>Ψ</mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow><mn>2</mn></msup></semantics></math></inline-formula>. Our model is discussed in the context of Boltzmann’s kinetic theory, and we demonstrate a kind of H theorem for the relaxation to the quantum equilibrium regime. |
format |
article |
author |
Aurélien Drezet |
author_facet |
Aurélien Drezet |
author_sort |
Aurélien Drezet |
title |
Justifying Born’s Rule <i>P<sub>α</sub></i> = |Ψ<i><sub>α</sub></i>|<sup>2</sup> Using Deterministic Chaos, Decoherence, and the de Broglie–Bohm Quantum Theory |
title_short |
Justifying Born’s Rule <i>P<sub>α</sub></i> = |Ψ<i><sub>α</sub></i>|<sup>2</sup> Using Deterministic Chaos, Decoherence, and the de Broglie–Bohm Quantum Theory |
title_full |
Justifying Born’s Rule <i>P<sub>α</sub></i> = |Ψ<i><sub>α</sub></i>|<sup>2</sup> Using Deterministic Chaos, Decoherence, and the de Broglie–Bohm Quantum Theory |
title_fullStr |
Justifying Born’s Rule <i>P<sub>α</sub></i> = |Ψ<i><sub>α</sub></i>|<sup>2</sup> Using Deterministic Chaos, Decoherence, and the de Broglie–Bohm Quantum Theory |
title_full_unstemmed |
Justifying Born’s Rule <i>P<sub>α</sub></i> = |Ψ<i><sub>α</sub></i>|<sup>2</sup> Using Deterministic Chaos, Decoherence, and the de Broglie–Bohm Quantum Theory |
title_sort |
justifying born’s rule <i>p<sub>α</sub></i> = |ψ<i><sub>α</sub></i>|<sup>2</sup> using deterministic chaos, decoherence, and the de broglie–bohm quantum theory |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/473ca24e127e497fa693f04ace7eb9ed |
work_keys_str_mv |
AT aureliendrezet justifyingbornsruleipsubasubipsisubasubisup2supusingdeterministicchaosdecoherenceandthedebrogliebohmquantumtheory |
_version_ |
1718412281838043136 |