A note on maximal operators related to Laplace-Bessel differential operators on variable exponent Lebesgue spaces

In this paper, we consider the maximal operator related to the Laplace-Bessel differential operator (BB-maximal operator) on Lp(⋅),γ(Rk,+n){L}_{p\left(\cdot ),\gamma }\left({{\mathbb{R}}}_{k,+}^{n}) variable exponent Lebesgue spaces. We will give a necessary condition for the boundedness of the BB-m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Kaya Esra
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/4748c6e8a41244f69bf3938d7df26ba5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, we consider the maximal operator related to the Laplace-Bessel differential operator (BB-maximal operator) on Lp(⋅),γ(Rk,+n){L}_{p\left(\cdot ),\gamma }\left({{\mathbb{R}}}_{k,+}^{n}) variable exponent Lebesgue spaces. We will give a necessary condition for the boundedness of the BB-maximal operator on variable exponent Lebesgue spaces. Moreover, we will obtain that the BB-maximal operator is not bounded on Lp(⋅),γ(Rk,+n){L}_{p\left(\cdot ),\gamma }\left({{\mathbb{R}}}_{k,+}^{n}) variable exponent Lebesgue spaces in the case of p−=1{p}_{-}=1. We will also prove the boundedness of the fractional maximal function associated with the Laplace-Bessel differential operator (fractional BB-maximal function) on Lp(⋅),γ(Rk,+n){L}_{p\left(\cdot ),\gamma }\left({{\mathbb{R}}}_{k,+}^{n}) variable exponent Lebesgue spaces.