Machine Learning-Based Classification of Dependence in Ambulation in Stroke Patients Using Smartphone Video Data
The goal of this study was to develop a framework to classify dependence in ambulation by employing a deep model in a 3D convolutional neural network (3D-CNN) using video data recorded by a smartphone during inpatient rehabilitation therapy in stroke patients. Among 2311 video clips, 1218 walk actio...
Guardado en:
Autores principales: | Jong Taek Lee, Eunhee Park, Tae-Du Jung |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/47618b5aad364084a4feec85ccb1f94c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Safety INdEx of Prehospital On Scene Triage (SINEPOST) study: the development and validation of a risk prediction model to support ambulance clinical transport decisions on-scene—a protocol
por: Jamie Miles, et al.
Publicado: (2021) -
Virtual Reality and Physiotherapy in Post-Stroke Functional Re-Education of the Lower Extremity: A Controlled Clinical Trial on a New Approach
por: Carlos Luque-Moreno, et al.
Publicado: (2021) -
The Effects of Sit-to-Stand Training Combined with Real-Time Visual Feedback on Strength, Balance, Gait Ability, and Quality of Life in Patients with Stroke: A Randomized Controlled Trial
por: Seung-Jun Hyun, et al.
Publicado: (2021) -
Impacts of Mobility Dogs on Kinematics during Ambulation: A Quantitative Study
por: Kayla Altman, et al.
Publicado: (2021) -
Evaluation of Postural Sway in Post-stroke Patients by Dynamic Time Warping Clustering
por: Dongdong Li, et al.
Publicado: (2021)