Machine Learning-Based Classification of Dependence in Ambulation in Stroke Patients Using Smartphone Video Data
The goal of this study was to develop a framework to classify dependence in ambulation by employing a deep model in a 3D convolutional neural network (3D-CNN) using video data recorded by a smartphone during inpatient rehabilitation therapy in stroke patients. Among 2311 video clips, 1218 walk actio...
Enregistré dans:
Auteurs principaux: | Jong Taek Lee, Eunhee Park, Tae-Du Jung |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/47618b5aad364084a4feec85ccb1f94c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The Safety INdEx of Prehospital On Scene Triage (SINEPOST) study: the development and validation of a risk prediction model to support ambulance clinical transport decisions on-scene—a protocol
par: Jamie Miles, et autres
Publié: (2021) -
Virtual Reality and Physiotherapy in Post-Stroke Functional Re-Education of the Lower Extremity: A Controlled Clinical Trial on a New Approach
par: Carlos Luque-Moreno, et autres
Publié: (2021) -
The Effects of Sit-to-Stand Training Combined with Real-Time Visual Feedback on Strength, Balance, Gait Ability, and Quality of Life in Patients with Stroke: A Randomized Controlled Trial
par: Seung-Jun Hyun, et autres
Publié: (2021) -
Impacts of Mobility Dogs on Kinematics during Ambulation: A Quantitative Study
par: Kayla Altman, et autres
Publié: (2021) -
Evaluation of Postural Sway in Post-stroke Patients by Dynamic Time Warping Clustering
par: Dongdong Li, et autres
Publié: (2021)