Machine learning models perform better than traditional empirical models for stomatal conductance when applied to multiple tree species across different forest biomes
Stomatal closure decreases water loss and is one of the main mechanisms that trees can use to mitigate drought-induced physiological stress. The adaptability of trees to drought is likely to be of increasing importance as climate changes occur around the world. Modelling stomatal regulation can help...
Guardado en:
Autores principales: | Alta Saunders, David M. Drew, Willie Brink |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/47652b4c8d7a4f499a9e4b26f0d7ccb1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Barley Genotypes Vary in Stomatal Responsiveness to Light and CO<sub>2</sub> Conditions
por: Lena Hunt, et al.
Publicado: (2021) -
Reproductive Stage Drought Tolerance in Wheat: Importance of Stomatal Conductance and Plant Growth Regulators
por: Olive Onyemaobi, et al.
Publicado: (2021) -
Diurnal Response of Photosystem I to Fluctuating Light Is Affected by Stomatal Conductance
por: Ting-Yu Li, et al.
Publicado: (2021) -
Plant stomatal conductance determined transpiration and photosynthesis both contribute to the enhanced negative air ion (NAI)
por: Zhenzhen Zhang, et al.
Publicado: (2021) -
Gene Action Governing the Inheritance of Stomatal Conductance in Four Wheat Crosses Under High Temperature Stress Condition
por: Kalasapura Thimmappa Ramya, et al.
Publicado: (2021)