Machine learning models perform better than traditional empirical models for stomatal conductance when applied to multiple tree species across different forest biomes
Stomatal closure decreases water loss and is one of the main mechanisms that trees can use to mitigate drought-induced physiological stress. The adaptability of trees to drought is likely to be of increasing importance as climate changes occur around the world. Modelling stomatal regulation can help...
Enregistré dans:
Auteurs principaux: | Alta Saunders, David M. Drew, Willie Brink |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/47652b4c8d7a4f499a9e4b26f0d7ccb1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Barley Genotypes Vary in Stomatal Responsiveness to Light and CO<sub>2</sub> Conditions
par: Lena Hunt, et autres
Publié: (2021) -
Reproductive Stage Drought Tolerance in Wheat: Importance of Stomatal Conductance and Plant Growth Regulators
par: Olive Onyemaobi, et autres
Publié: (2021) -
Diurnal Response of Photosystem I to Fluctuating Light Is Affected by Stomatal Conductance
par: Ting-Yu Li, et autres
Publié: (2021) -
Plant stomatal conductance determined transpiration and photosynthesis both contribute to the enhanced negative air ion (NAI)
par: Zhenzhen Zhang, et autres
Publié: (2021) -
Gene Action Governing the Inheritance of Stomatal Conductance in Four Wheat Crosses Under High Temperature Stress Condition
par: Kalasapura Thimmappa Ramya, et autres
Publié: (2021)