eDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants
Abstract With an accelerating negative impact of anthropogenic actions on natural ecosystems, non-invasive biodiversity assessments are becoming increasingly crucial. As a consequence, the interest in the application of environmental DNA (eDNA) survey techniques has increased. The use of eDNA extrac...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4774e761e7bc46e2820a17bc2728a210 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4774e761e7bc46e2820a17bc2728a210 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4774e761e7bc46e2820a17bc2728a2102021-12-02T16:35:56ZeDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants10.1038/s41598-021-85488-92045-2322https://doaj.org/article/4774e761e7bc46e2820a17bc2728a2102021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-85488-9https://doaj.org/toc/2045-2322Abstract With an accelerating negative impact of anthropogenic actions on natural ecosystems, non-invasive biodiversity assessments are becoming increasingly crucial. As a consequence, the interest in the application of environmental DNA (eDNA) survey techniques has increased. The use of eDNA extracted from faeces from generalist predators, have recently been described as “biodiversity capsules” and suggested as a complementary tool for improving current biodiversity assessments. In this study, using faecal samples from two generalist omnivore species, the Eurasian badger and the red fox, we evaluated the applicability of eDNA metabarcoding in determining dietary composition, compared to macroscopic diet identification techniques. Subsequently, we used the dietary information obtained to assess its contribution to biodiversity assessments. Compared to classic macroscopic techniques, we found that eDNA metabarcoding detected more taxa, at higher taxonomic resolution, and proved to be an important technique to verify the species identification of the predator from field collected faeces. Furthermore, we showed how dietary analyses complemented field observations in describing biodiversity by identifying consumed flora and fauna that went unnoticed during field observations. While diet analysis approaches could not substitute field observations entirely, we suggest that their integration with other methods might overcome intrinsic limitations of single techniques in future biodiversity surveys.Louise NørgaardCarsten Riis OlesenKristian TrøjelsgaardCino PertoldiJeppe Lund NielsenPierre TaberletAritz Ruiz-GonzálezMarta De BarbaLaura IacolinaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Louise Nørgaard Carsten Riis Olesen Kristian Trøjelsgaard Cino Pertoldi Jeppe Lund Nielsen Pierre Taberlet Aritz Ruiz-González Marta De Barba Laura Iacolina eDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants |
description |
Abstract With an accelerating negative impact of anthropogenic actions on natural ecosystems, non-invasive biodiversity assessments are becoming increasingly crucial. As a consequence, the interest in the application of environmental DNA (eDNA) survey techniques has increased. The use of eDNA extracted from faeces from generalist predators, have recently been described as “biodiversity capsules” and suggested as a complementary tool for improving current biodiversity assessments. In this study, using faecal samples from two generalist omnivore species, the Eurasian badger and the red fox, we evaluated the applicability of eDNA metabarcoding in determining dietary composition, compared to macroscopic diet identification techniques. Subsequently, we used the dietary information obtained to assess its contribution to biodiversity assessments. Compared to classic macroscopic techniques, we found that eDNA metabarcoding detected more taxa, at higher taxonomic resolution, and proved to be an important technique to verify the species identification of the predator from field collected faeces. Furthermore, we showed how dietary analyses complemented field observations in describing biodiversity by identifying consumed flora and fauna that went unnoticed during field observations. While diet analysis approaches could not substitute field observations entirely, we suggest that their integration with other methods might overcome intrinsic limitations of single techniques in future biodiversity surveys. |
format |
article |
author |
Louise Nørgaard Carsten Riis Olesen Kristian Trøjelsgaard Cino Pertoldi Jeppe Lund Nielsen Pierre Taberlet Aritz Ruiz-González Marta De Barba Laura Iacolina |
author_facet |
Louise Nørgaard Carsten Riis Olesen Kristian Trøjelsgaard Cino Pertoldi Jeppe Lund Nielsen Pierre Taberlet Aritz Ruiz-González Marta De Barba Laura Iacolina |
author_sort |
Louise Nørgaard |
title |
eDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants |
title_short |
eDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants |
title_full |
eDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants |
title_fullStr |
eDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants |
title_full_unstemmed |
eDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants |
title_sort |
edna metabarcoding for biodiversity assessment, generalist predators as sampling assistants |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/4774e761e7bc46e2820a17bc2728a210 |
work_keys_str_mv |
AT louisenørgaard ednametabarcodingforbiodiversityassessmentgeneralistpredatorsassamplingassistants AT carstenriisolesen ednametabarcodingforbiodiversityassessmentgeneralistpredatorsassamplingassistants AT kristiantrøjelsgaard ednametabarcodingforbiodiversityassessmentgeneralistpredatorsassamplingassistants AT cinopertoldi ednametabarcodingforbiodiversityassessmentgeneralistpredatorsassamplingassistants AT jeppelundnielsen ednametabarcodingforbiodiversityassessmentgeneralistpredatorsassamplingassistants AT pierretaberlet ednametabarcodingforbiodiversityassessmentgeneralistpredatorsassamplingassistants AT aritzruizgonzalez ednametabarcodingforbiodiversityassessmentgeneralistpredatorsassamplingassistants AT martadebarba ednametabarcodingforbiodiversityassessmentgeneralistpredatorsassamplingassistants AT lauraiacolina ednametabarcodingforbiodiversityassessmentgeneralistpredatorsassamplingassistants |
_version_ |
1718383687400161280 |