Improving Accuracy using The ASERLU layer in CNN-BiLSTM Architecture on Sentiment Analysis
There have been 350,000 tweets generated by the interaction of social networks with different cultures and educational backgrounds in the last ten years. Various sentiments are expressed in the user comments, from support to hatred. The sentiments regarded the United States General Election in 2020....
Guardado en:
Autores principales: | Sandi Hermawan, Rilla Mandala |
---|---|
Formato: | article |
Lenguaje: | ID |
Publicado: |
Ikatan Ahli Indormatika Indonesia
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/47a0ebe4b47846e580ef85bd6c100f6f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
Ejemplares similares
-
Rumor Detection Based on Attention CNN and Time Series of Context Information
por: Yun Peng, et al.
Publicado: (2021) -
Air Pollutant Concentration Prediction Based on a CEEMDAN-FE-BiLSTM Model
por: Xuchu Jiang, et al.
Publicado: (2021) -
Deep Bidirectional LSTM Network Learning-Based Sentiment Analysis for Arabic Text
por: Elfaik Hanane, et al.
Publicado: (2020) -
TASKS AND METHODS OF TEXT SENTIMENT ANALYSIS
por: А. Mukasheva
Publicado: (2021) -
Studi Literatur Sistematis Terhadap Pengembangan Leksikon Sentiment
por: Sherly Christina, et al.
Publicado: (2020)